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Tudnivalók a vizsgázók számára
A szóbeli vizsgán a tétel címében megjelölt téma kifejtését és a kitûzött feladat megoldását várják
el a vizsgázóktól.
A tétel címében megjelölt témát logikusan, arányosan felépített, szabad elõadásban, önállóan
kell kifejtenie. A vizsgabizottság tagjai akkor kérdezhetnek közbe, ha teljesen helytelenül indult el,
vagy nyilvánvaló, hogy elakadt.
Ehhez a felkészülési idõ alatt célszerû vázlatot készítenie. Ebben tervezze meg a címben megjelölt
témakör(ök)höz tartozó ismeretanyag rövid áttekintését, dolgozza ki azokat a részeket, amelyeket
részletesen kifejt, oldja meg a feladatot! Vázlatát felelete közben használhatja.

A feleletben feltétlenül szerepelniük kell az alábbi részleteknek:
• egy, a témához tartozó, a vizsgázó választása szerinti definíció pontos kimondása;
• egy, a témához tartozó, a vizsgázó választása szerinti tétel pontos kimondása és bizonyítása;
• a kitûzött feladat megoldása;
• a téma matematikán belüli vagy azon kívüli alkalmazása, illetve matematikatörténeti vonat-

kozása (több ismertetése vagy egy részletesebb bemutatása).

Ha a tételhez tartozó kitûzött feladat bizonyítást igényel, akkor ennek a megoldása nem helyettesíti
a témakörhöz tartozó tétel kimondását és bizonyítását.
Használható segédeszközök: a tételcímekkel együtt nyilvánosságra hozott képlettár (a vizsgabizott-
ság biztosítja), szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép, körzõ,
vonalzó és szögmérõ.

A tétellapra rajzolni és írni nem szabad!

Értékelés
A szóbeli vizsgán elérhetõ pontszám: 35. Az értékelés központi értékelési útmutató alapján történik.

Az értékelési szempontok:

A felelet tartalmi összetétele, felépítésének szerkezete 10 pont
Logikus felépítés, szerkesztettség, tartalmi gazdagság 6 pont

Ebben a pontban kell értékelni a feleletben szereplõ, a témához illõ definícióknak, a kimon-
dott tételnek és bizonyításának a nehézségét is.

A felelet matematikai tartalmi helyessége 4 pont
A feleletben szereplõ, a témához illõ definíció helyes kimondása 2 pont

Ha több definíciót is elmond, akkor a definícióra adható 2 ponttal a legjobbat kell é rtékelni.
A feleletben szereplõ, a témához illõ tétel helyes kimondása és bizonyítása 6 pont

A tétel helyes kimondása 2 pont
A tétel helyes bizonyítása 4 pont

A kitûzött feladat helyes megoldása 8 pont
Ha a felelõ a feladatot csak a vizsgáztató segítségével tudja elkezdeni,
akkor maximum 5 pont adható.

Alkalmazások ismertetése 4 pont
Egy, a tételhez illõ alkalmazás vagy matematikatörténeti vonatkozás részletes kifejtése, vagy 3-4
lényegesen eltérõ alkalmazás vagy matematikatörténeti vonatkozás rövid ismertetése.

Matematikai nyelvhasználat, kommunikációs készség 5 pont
Matematikai nyelvhasználat 2 pont
Önálló, folyamatos elõadásmód 2 pont
Kommunikáció 1 pont

Ez utóbbi 1 pont akkor is jár, ha a vizsgázó önálló felelete után nem volt szükség kérdésre.

Felhívjuk a figyelmet, hogy azoknál a témaköröknél, ahol a címben foglalt téma kifejtésének egyik
legfontosabb része alkalmazások ismertetése, ott a matematikán kívüli alkalmazások felsorolását
helyettesítheti egy matematikán belüli alkalmazás részletes ismertetése.
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1. Halmazok, halmazmûveletek.
Nevezetes ponthalmazok a síkban és a térben

Vázlat:
I. Halmazok, részhalmazok

n elemû halmaz részhalmazainak száma
II. Halmazmûveletek (komplementer, unió, metszet, különbség), mûveletek tulajdonságai

III. Nevezetes ponthalmazok: kör (gömb), párhuzamos egyenespár (hengerfelület), szakaszfelezõ
merõleges egyenes (sík), középpárhuzamos, szögfelezõ, parabola

IV. Egyéb ponthalmazok: 3 ponttól, illetve 3 egyenestõl egyenlõ távolágra lévõ pontok, látó-
körív

V. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Halmazok, részhalmazok

A halmaz és a halmaz eleme alapfogalom, ezeket a kifejezéseket nem definiáljuk. De a halmaz
megadásának szigorú követelménye van: egy halmazt úgy kell megadnunk, hogy minden szóba
jöhetõ dologról egyértelmûen eldönthetõ legyen, hogy az adott halmazhoz tartozik, vagy sem.
A halmazokat nyomtatott nagybetûvel, a halmaz elemeit kisbetûvel jelöljük a következõ módon:
A = {a; b; c}, ebben az esetben a ŒA, x œA.

Halmaz megadási módjai:

• Elemeinek felsorolásával: A = {0; 2; 4; 6}
• Az elemeit egyértelmûen meghatározó utasítással: B = {egyjegyû páratlan számok}
• Szimbólumokkal: A = {xΩx2 - x - 6 = 0}, B = {xΩx2 > 9}
• Venn-diagrammal:

A

1

2

DEFINÍCIÓ: Két halmaz egyenlõ, ha ugyanazokat az elemeket tartalmazzák.

DEFINÍCIÓ: Az elem nélküli halmazt üres halmaznak nevezzük.
Jele: { } vagy ∆.

DEFINÍCIÓ: Az A halmaz részhalmaza a B halmaznak, ha A minden eleme a B halmaznak is eleme.
Jele: A Õ B.

DEFINÍCIÓ: Az A halmaz valódi részhalmaza a B halmaznak, ha A részhalmaza a B-nek, de nem
egyenlõ vele.
Jele: A Ã B.

Tulajdonságok:
• Az üres halmaz minden halmaznak részhalmaza: ∆ Õ A.
• Minden halmaz önmaga részhalmaza: A Õ A.
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• Ha A Õ B és B Õ A, akkor A = B.
• Ha A Õ B és B Õ C, akkor A Õ C.

TÉTEL: Az n elemû halmaz összes részhalmazainak száma: 2n (n ŒN).

BIZONYÍTÁS I.: A bizonyítást teljes indukcióval végezzük, amelynek lényege, hogy elõször belát-
juk egy konkrét n esetére az állítást, majd azt mutatjuk meg, ha az állítás igaz egy tetszõleges
n-re, akkor igaz az õt követõ (n + 1)-re is, azaz bizonyítjuk az állítás öröklõdését.
Az üres halmaznak egyetlen részhalmaza van: önmaga (20 = 1).
Egy egyelemû halmaznak 2 részhalmaza van: az üres halmaz és önmaga (21 = 2).
Egy kételemû halmaznak 4 részhalmaza van: az üres halmaz, 2 egyelemû halmaz és önmaga
(22 = 4).
Tegyük fel, hogy egy k elemû halmaznak 2k db részhalmaza van. Bizonyítani kell, hogy ez
öröklõdik, vagyis egy (k + 1) elemû halmaznak 2k + 1 db részhalmaza van.
Tekintsük az elõbbi k elemû halmazt. Ekkor ha az eddigi elemek mellé egy (k + 1)-edik ele-
met teszünk a halmazba, akkor ezzel megkétszerezzük a lehetséges részhalmazok számát, hi-
szen az új elemet vagy kiválasztjuk az eddigi részhalmazokba, vagy nem. Vagyis a (k + 1)
elemû halmaz részhalmazainak száma 2 ◊ 2k = 2k + 1, amit bizonyítani kívántunk.

BIZONYÍTÁS II.: Az n  elemû halmaznak 
0
n⎛ ⎞
⎜ ⎟
⎝ ⎠

 db 0 elemû, 
1
n⎛ ⎞
⎜ ⎟
⎝ ⎠

db 1 elemû, 
2
n⎛ ⎞
⎜ ⎟
⎝ ⎠

db 2 elemû, …

1
n

n
⎛ ⎞
⎜ ⎟−⎝ ⎠

db n - 1 elemû, n
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

db n elemû részhalmaza van, mert n elembõl k db-ot kiválasztani

n
k
⎛ ⎞
⎜ ⎟
⎝ ⎠

-féleképpen lehet.

Így az összes részhalmazok száma: ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
...

0 1 2 1
n n n n n

n n
.

Vizsgáljuk meg n2 -t:

( ) 0 1 1 2 2 1 1 02 1 1 1 1 1 1 1 1 ... 1 1 1 1
0 1 2 1

nn n n n n nn n n n n
n n

− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, ami

egyenlõ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
...

0 1 2 1
n n n n n

n n
-nel a binomiális tétel miatt.

II. Halmazmûveletek

DEFINÍCIÓ: Azt a halmazt, amelynek a vizsgált halmazok részhalmazai, alaphalmaznak vagy
univerzumnak nevezzük. Jele: U vagy H.

DEFINÍCIÓ: Egy A halmaz komplementer halmazának az alaphalmaz azon elemeinek halmazát

nevezzük, amelyek az A halmaznak nem elemei. Jele: A . (Fontos tulajdonság: =A A .)

DEFINÍCIÓ: Két vagy több halmaz uniója vagy egyesítése mindazon elemek halmaza, amelyek
legalább az egyik halmaznak elemei. Jele: ».

DEFINÍCIÓ: Két vagy több halmaz metszete vagy közös része pontosan azoknak az elemeknek
a halmaza, amelyek mindegyik halmaznak elemei. Jele: «.

DEFINÍCIÓ: Két halmaz diszjunkt, ha nincs közös elemük, vagyis a metszetük üres halmaz.
A « B = ∆.
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DEFINÍCIÓ: Az A és B halmaz különbsége az A halmaz mindazon elemeinek halmaza, amelyek
a B halmaznak nem elemei. Jele: A \ B.

U

A

A
U U

A B

A

B U

A B

Komplementer halmaz Két halmaz uniója Két halmaz metszete

U

BA

U

A B

Diszjunkt halmazok A és B halmaz A \ B különbsége

Halmazmûveletek tulajdonságai

Kommutatív
(felcserélhetõ)

A » B = B » A A « B = B « A

Asszociatív
(csoportosítható)

(A » B) » C = A » (B » C) (A « B) « C = A « (B « C)

Disztributív
(széttagolható)

A » (B « C) = (A » B) « (A » C) A « (B » C) = (A « B) » (A « C)

De Morgan-azonos-
ságok

A B A B∪ = ∩   és  A B A B∩ = ∪

További azonossá-
gok

A » ∆ = A
A » A = A
A » A  = U
A » U = U

=A A

A « ∆ = ∆
A « A = A

A « A  = ∆
A « U = A

III. Nevezetes ponthalmazok a síkban és a térben

DEFINÍCIÓ: Azoknak a pontoknak a halmaza a síkon, amelyek a sík egy adott O pontjától adott
r távolságra vannak, egy O középpontú, r sugarú kör.

DEFINÍCIÓ: Azoknak a pontoknak a halmaza a térben, amelyek a tér adott O pontjától adott r tá-
volságra vannak, egy O középpontú, r sugarú gömb.

DEFINÍCIÓ: Adott egyenestõl adott távolságra lévõ pontok halmaza a síkon az egyenessel párhu-
zamos egyenespár.

DEFINÍCIÓ: Adott egyenestõl adott távolságra lévõ pontok halmaza a térben olyan hengerfelület,
amelynek tengelye az adott egyenes.
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DEFINÍCIÓ: Két ponttól egyenlõ távolságra lévõ pontok halmaza a síkban a szakasz felezõmerõle-
ges egyenese.

P

Q

A F B

DEFINÍCIÓ: Két ponttól egyenlõ távolságra lévõ pontok halmaza a térben a szakasz felezõmerõle-
ges síkja.

A

B

F

DEFINÍCIÓ: Két párhuzamos egyenestõl egyenlõ távolságra lévõ pontok halmaza a síkban olyan
egyenes, amely a két adott egyenessel párhuzamos és távolságukat felezi (középpárhuza-
mos).

DEFINÍCIÓ: Két metszõ egyenestõl egyenlõ távolságra lévõ pontok halmaza az általuk bezárt szö-
gek szögfelezõ egyenesei. Két ilyen egyenes van, ezek merõlegesek egymásra.

e

f

DEFINÍCIÓ: Egy egyenestõl és egy rajta kívül lévõ ponttól egyenlõ távolságra lévõ pontok halmaza
a síkon: a parabola.
Az adott F pont a parabola fókuszpontja, az adott v egyenes a parabola vezéregyenese
(direktrixe), a pont és az egyenes távolsága a parabola paramétere.

d

t

P

F

T
p
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IV. Egyéb ponthalmazok

TÉTEL: Három adott ponttól egyenlõ távolságra lévõ pontok halmaza a síkon egy pont (ha a 3 pont
nem esik egy egyenesre), vagy üres halmaz (ha a 3 pont egy egyenesre esik).

C

A B

K

A B C

TÉTEL: A háromszög három oldalfelezõ merõlegese egy pontban metszi egymást.

BIZONYÍTÁS: Tekintsük az ABC háromszög AB és BC oldalának oldalfelezõ merõlegesét. Ezek az
egyenesek metszik egymást, mert a háromszög oldalai nem lehetnek párhuzamosak egymás-
sal. Jelöljük a két oldalfelezõ merõleges metszéspontját M-mel. Ekkor M pont egyenlõ távol-
ságra van A és B csúcsoktól (mert M illeszkedik AB szakaszfelezõ merõlegesére), illetve B és
C csúcsoktól (mert M illeszkedik BC szakaszfelezõ merõlegesére). Ebbõl következik, hogy
M egyenlõ távolságra van A és C csúcsoktól, tehát M-en áthalad AC oldalfelezõ merõlegese.
Tehát a három oldalfelezõ merõleges egy pontban metszi egymást.

A

B

C

M

f
A B

f
BC

TÉTEL: A háromszög oldalfelezõ merõlegeseinek metszéspontja a háromszög köré írt kör kö-
zéppontja.

BIZONYÍTÁS: Az elõbbi bizonyítás szerint M egyenlõ távolságra van A-tól, B-tõl és C-tõl. Legyen
ez a távolság MA = MB = MC = r. Ekkor A, B és C pontok r távolságra vannak M-tõl, azaz
illeszkednek egy M középpontú, r sugarú körre.

A háromszög köré írt kör középpontja hegyesszögû háromszög esetén a háromszögön belül, derék-
szögû háromszög esetén az átfogó felezõpontjába, tompaszögû háromszög esetén a háromszögön
kívülre esik.

O
O

O
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TÉTEL: Három adott ponttól egyenlõ távolságra lévõ pontok halmaza a térben egy olyan egyenes,
amely áthalad a három pont mint háromszög köré írható kör középpontján, és merõleges
a 3 pont síkjára (ha a 3 pont nem esik egy egyenesbe), vagy üres halmaz (ha a 3 pont egy
egyenesbe esik).

TÉTEL: Három egyenestõl egyenlõ távolságra lévõ pontok halmaza a síkon:
• Ha a 3 egyenes párhuzamos, akkor üres halmaz.
• Ha 2 egyenes párhuzamos (e ª f), egy pedig metszi õket (g), akkor a 2 párhuzamos egye-

nes középpárhuzamosán két olyan pont, amelyek illeszkednek két metszõ egyenes (pl. e és
g) szögfelezõire.

e

g

f

M1 M2

• Ha a 3 egyenes 3 különbözõ pontban metszi egymást, akkor szögfelezõ egyeneseik met-
széspontjai. 4 ilyen pont van, az egyik a háromszög beírt körének, 3 pedig a háromszög
hozzáírt köreinek középpontja.

O
O1

O2

O3

• Ha a 3 egyenes egy pontban metszi egymást, akkor egyetlen pont, a 3 egyenes metszés-
pontja.

e

gf

M
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DEFINÍCIÓ: Azoknak a pontoknak a halmaza a síkon, amelyekbõl egy adott szakasz adott a szög-
ben (0º < a < 180º) látszik két, a szakasz egyenesére szimmetrikusan elhelyezkedõ körív
(látókörívek).

O1

A B

a

O2

A B

O2

a

O1

A B
O

a

0 < < 90ºa

a = 90º

90º< < 180ºa

V. Alkalmazások
• Biológiában a rendszertan, kémiában a periódusos rendszerbeli csoportosítás is halmazel-

méleti fogalmak. Mûveletek: melyik csoport melyiknek részhalmaza?
• Vércsoport szerint az emberek különbözõ halmazokba sorolhatók. Mûveletek: ki kinek adhat

vért?
• Európa országai hivatalos nyelvük alapján halmazokba sorolhatók. Mûveletek: melyik or-

szágban hivatalos nyelv az angol vagy a német?
• Az érettségin a nem kötelezõ tárgyak választása szerint is halmazokba sorolhatók a vizsgá-

zók. Mûveletek: ki vizsgázik kémiából és biológiából is?
• A függvényekkel kapcsolatban is használjuk a halmazokat (értelmezési tartomány, érték-

készlet).
• Egyenletek értelmezési tartományának vizsgálatakor számhalmazok metszetét képezzük.
• A koordináta-geometriában a kör, a parabola egyenletének felírásakor az adott görbe definí-

cióját használjuk fel.
• Látókörívek: egy téglalap egyik oldala a szomszédos oldal mely pontjából látszik a legna-

gyobb szögben (színház, sportpálya).
• Szerkesztési feladatokban: háromszög szerkesztése egy oldal, a vele szemközti szög és az ol-

dalhoz tartozó magasság ismeretében, vagy adott egy pont és egy egyenes, szerkesszük meg
az egyenest érintõ, a ponton áthaladó, adott sugarú köröket.

• Parabolaantennák.
• Két tanya közös postaládát kap az országút mentén. Hova helyezzék, hogy mindkét tanyától

egyenlõ távolságra legyen?

A

B

F

P út
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Matematikatörténeti vonatkozások:

• A halmazok szemléltetésére elõször Euler (1707–1783) német matematikus használt köröket.
Az õ jelölésrendszerét finomította késõbb Venn (1834–1923) angol matematikus, ez a jelö-
lés terjedt el, amit Venn-diagramnak nevezünk.

• A halmazelmélet megteremtése Cantor (1845–1918) német matematikushoz fûzõdik. Kor-
társai többsége nem értette meg a végtelen halmazok számosságával kapcsolatos gondolatait:
a természetes számok halmaza valódi részhalmaza a racionális számok halmazának, számos-
ságuk mégis egyenlõ. Meghatározása szerint két halmaz egyenlõ számosságú, ha elemeik
között kölcsönösen egyértelmû hozzárendelés létesíthetõ. Hozzá fûzõdik a megszámlálható
halmazok fogalma. A róla elnevezett Cantor-féle átlós eljárással bizonyította, hogy a valós
számok nem megszámlálhatóak.
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2. Racionális és irracionális számok.
Mûveletek a racionális és irracionális számok halmazán.
Közönséges és tizedes törtek. Halmazok számossága

Vázlat:
I. Számhalmazok: természetes, egész, racionális, irracionális, valós számok, ezek zártsága

II. Mûveletek a racionális számok halmazán
III. Mûveletek az irracionális számok halmazán
IV. Mûveleti tulajdonságok: kommutativitás, asszociativitás, disztributivitás
V. Közönséges és tizedes törtek

VI. Halmazok számossága: véges, végtelen (megszámlálhatóan, illetve nem megszámlálhatóan
végtelen) halmazok

VII. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Számhalmazok

DEFINÍCIÓ: A természetes számok halmaza (N) a pozitív egész számokból és a 0-ból áll.
A természetes számok halmaza zárt az összeadásra és a szorzásra nézve, azaz bármely két
természetes szám összege és szorzata természetes szám. Ugyanakkor a kivonás és az osztás
már nem végezhetõ el ezen a halmazon belül, ezek a mûveletek „kimutatnak” a halmazból.
Pl. 3 - x = 5 egyenlet megoldása.

DEFINÍCIÓ: Az egész számok halmaza (Z) a természetes számokból és azok ellentettjeibõl áll.
Az egész számok halmaza az összeadáson és a szorzáson kívül a kivonásra nézve is zárt,
ugyanakkor az osztás kimutathat a halmazból. Pl. 2x + 3 = 4 egyenlet megoldása.

DEFINÍCIÓ: A racionális számok halmaza (Q) azokból a számokból áll, amelyek felírhatók két

egész szám hányadosaként, azaz a
b

 alakban, ahol a, b ŒZ, b π 0.

A racionális számok halmaza mind a 4 alapmûveletre zárt (osztásra, ha az osztó nem 0), de
itt is találunk olyan egyenletet, amelynek nincs megoldása ezen a halmazon. Pl.: 2x2 - 3 = 0.

DEFINÍCIÓ: Azokat a számokat, amelyek nem írhatók fel két egész szám hányadosaként, irracio-
nális számoknak (Q*) nevezzük.

TÉTEL: 2  irracionális szám.

BIZONYÍTÁS: A bizonyítást indirekt módon végezzük, lényege, hogy a bizonyítandó állítás tagadá-
sáról bebizonyítjuk, hogy az hamis. Ez azt jelenti, hogy a bizonyítandó állítás igaz.

Tegyük fel, hogy 2  racionális szám, azaz felírható a
b

 alakban, ahol a, b ŒZ, b π 0.

Ekkor 
2

2 2
2

2 2 2a a b a
b b

= ⇒ = ⇒ ⋅ = .
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Az egyenlet jobb oldalán szereplõ (a2) szám prímtényezõs felbontásában a 2 mindenfélekép-
pen páros kitevõn (akár a nulladikon) szerepel, míg a bal oldalon levõ szám (2 ◊ b2) prímté-
nyezõs felbontásában a 2 kitevõje páratlan (legkevesebb 1).
Ez azonban lehetetlen, hiszen a számelmélet alaptétele szerint egy pozitív egész számnak
nincs két lényegesen különbözõ felbontása.
Tehát nem igaz az indirekt feltevésünk, vagyis igaz az eredeti állítás: 2 irracionális.

Tulajdonságok:

– Az irracionális számok halmaza nem zárt a 4 alapmûveletre ( )( )2 2 0 *+ − = ∉Q ,

2 2 0 *− = ∉Q , 2 2 2 *⋅ = ∉Q , 2 : 2 1 *= ∉Q . Tehát két irracionális szám ösz-
szege, különbsége, szorzata, hányadosa lehet racionális szám.

– Az irracionális számok tizedes tört alakja végtelen nem szakaszos tizedes tört.

DEFINÍCIÓ: A racionális és az irracionális számok halmaza diszjunkt halmazok (Q « Q* = ∆),
a két halmaz egyesítése a valós számok halmaza: R = Q » Q*.
A valós számok halmaza zárt a 4 alapmûveletre. A valós számok és részhalmazai:

1
947

0

–3

–1

–826
0,23 1/3

–0,61

p

2

Q R Q*

Z

N

N+

II. Mûveletek a racionális számok halmazán
Egy közönséges tört értéke nem, csak az alakja változik, ha a számlálóját és a nevezõjét ugyanazzal
a 0-tól különbözõ számmal szorozzuk (bõvítés), vagy ugyanazzal a 0-tól különbözõ számmal oszt-
juk (egyszerûsítés).
Ha a racionális számok közönséges tört alakúak, akkor a következõ szabályokkal lehet elvégezni az
alapmûveleteket:

• Összeadás és kivonás:
Csak azonos nevezõjû törteket lehet összeadni, kivonni, ezért közös nevezõre hozzuk a tör-
teket, vagyis a törteket bõvítjük egy közös többszörösû nevezõre (legjobb, ha a legkisebb
közös többszörösû nevezõre, mert így tudunk a legkisebb számokkal számolni):

,  ahol  , 0.a c a d c b a d c b b d
b d b d d b b d

⋅ ⋅ ⋅ ± ⋅± = ± = ≠
⋅ ⋅ ⋅

Ha a nevezõk (b és d) relatív prímek, akkor a legkisebb közös többszörösük a szorzatuk.

• Szorzás:
Törtet törttel úgy szorzunk, hogy a számlálót a számlálóval, a nevezõt a nevezõvel szorozzuk:

,  ahol  , 0.a c a c b d
b d b d

⋅⋅ = ≠
⋅

Egész számmal úgy szorzunk törtet, hogy törtként írjuk fel a szorzót ( )1
cc = , vagyis igazá-

ból a számlálót megszorozzuk, a nevezõt változatlanul hagyjuk.

• Osztás:
Törtet törttel úgy osztunk, hogy a változatlan osztandót szorozzuk az osztó reciprokával:

: ,  ahol  , , 0.a c a d a d b c d
b d b c b c

⋅= ⋅ = ≠
⋅
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Egész számmal úgy osztunk, hogy törtként írjuk fel az osztót ( )1
cc = , vagyis igazából a ne-

vezõt megszorozzuk, a számlálót változatlanul hagyjuk, vagy (egyszerûsíthetõ esetben) a szám-
lálót osztjuk, a nevezõt változatlanul hagyjuk.

III. Mûveletek az irracionális számok halmazán
Az alapmûveletek definiálhatók az irracionális számok körében úgy, hogy az eddigi azonosságok
életben maradjanak. Mivel tizedes tört alakjuk végtelen, nem periodikus, így azt csak közelítõen
tudjuk megadni. Ezért a pontos értékeket pl. hatvány, gyök, logaritmus alakban adjuk meg, ilyen-
kor viszont a megfelelõ mûveleti szabályokkal dolgozunk.

IV. Mûveleti tulajdonságok: a, b, c ŒR esetén

1. az összeadás és a szorzás kommutatív (felcserélhetõ)

a + b = b + a   és   a ◊ b = b ◊ a

2. az összeadás és a szorzás asszociatív (csoportosítható)

(a + b) + c = a + (b + c)   és   (a ◊ b) ◊ c = a ◊ (b ◊ c)

3. a szorzás az összeadásra nézve disztributív (széttagolható)

(a + b) ◊ c = a ◊ c + b ◊ c

V. Közönséges és tizedes törtek

A közönséges törtek formái lehetnek:

Az a
b

 közönséges tört, vagyis az a
b

 hányados a következõ alakokban fordulhat elõ (a, b ŒZ, b π 0,

és a tört végsõkig leegyszerûsített, azaz a és b legnagyobb közös osztója 1):
• egész szám, ha b osztója a-nak,
• véges tizedes tört, ha b prímtényezõs felbontásában a 2 és az 5 számokon kívül nincs más

prímszám,
• végtelen szakaszos tizedes tört, ha b prímtényezõs felbontásában a 2 és az 5 számokon kívül

más prímszám is van.

Összefoglalva:

A racionális számok a következõ alakúak: közönséges törtek, egészek, véges vagy végtelen szaka-
szos tizedes törtek.

A tizedes törtek formái lehetnek:

• véges tizedes törtek, ezek felírhatók közönséges tört alakban. Pl. 232,3
10

= .

• végtelen tizedes törtek:
– szakaszos tizedes törtek, ezek felírhatók közönséges tört alakban. Pl. végtelen mértani sor

összegeként, vagy a következõ módszerrel:
002,354545... = x000.
235,454545... = 100x.

A két egyenletet kivonva egymásból

233,1 2331233,1 99
99 990

x x= ⇒ = =

– nem szakaszos tizedes törtek nem írhatók át közönséges tört alakba.
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Összefoglalva:

A közönséges törtek mind felírhatók tizedes tört alakban (egész, véges, végtelen szakaszos tört alak-
ban).
A nem szakaszos tizedes törtek mind irracionális számok, tehát nem írhatók fel két egész szám há-
nyadosaként, tehát nem közönséges törtek. Ebbõl következik, hogy nem minden tizedes tört közön-
séges tört.

VI. Halmazok számossága

DEFINÍCIÓ: Egy A halmaz számossága az A halmaz elemeinek számát jelenti. Jele: ΩAΩ. Egy
halmaz számossága lehet véges vagy végtelen.

DEFINÍCIÓ: Egy halmaz véges halmaz, ha elemeinek számát egy természetes számmal megadhat-
juk. Ellenkezõ esetben, azaz ha a halmaz elemeinek számát nem adhatjuk meg természetes
számmal, akkor végtelen halmazról beszélünk.

DEFINÍCIÓ: A végtelen halmazok között találhatunk olyat, melynek elemei sorba rendezhetõk,
tehát megadható az 1., 2., 3., 4., … eleme. A pozitív természetes számokkal megegyezõ
számosságú halmazokat megszámlálhatóan végtelen halmazoknak nevezzük.
A megszámlálhatóság és a sorba rendezhetõség egy végtelen halmaznál ugyanazt jelenti.
Minden olyan halmaz megszámlálhatóan végtelen számosságú, amelynek elemei és a termé-
szetes számok között kölcsönösen egyértelmû megfeleltetés létesíthetõ.
Megszámlálhatóan végtelen számosságúak: Pl. egész számok, páros számok, négyzetszá-
mok, racionális számok.

TÉTEL: Az egész számok halmaza megszámlálhatóan végtelen halmaz.

BIZONYÍTÁS: Írjuk fel az egész számokat rendezett sorrendben a következõ módon: 0, +1, -1, +2,
-2, +3, -3, ... . Ezzel a rendezéssel minden egész számot felsoroltunk, egyértelmûen meg
tudjuk határozni a sorba rendezés n-edik elemét, így az egész számok halmazának számossá-
ga megegyezik a természetes számokéval, vagyis megszámlálhatóan végtelen halmaz.

TÉTEL: A racionális számok halmaza megszámlálhatóan végtelen halmaz.

BIZONYÍTÁS: A racionális számok a
b

 alakúak, ahol a, b ŒZ, b π 0. Képezzük a következő táblázat

szerint az a számlálóból és a b nevezőből álló racionális számokat:

0

+1
= 0

+1

+1
= +1

+2

+2
= +1

+3

+3
= +1

+4

+4
= +1

—2

—2
= +1

—3

—3
= +1

—4

—4
= +1

+2

+1
= +2

+4

+2
= +2

+3

+1
= +3

+4

+1
= +4

—2

—1
= +2

—4

—2
= +2

—3

—1
= +3

—4

—1
= +4

+2

—1
= —2

+4

—2
= —2

+3

—1
= —3

+4

—1
= —4

—2

+1
= —2

—4
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—3

+1
= —3

—4

+1
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—1

—1
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+1

—1
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+2

—2
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+3

—3
= —1

+4

—4
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—2

+2
= —1

—3
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= —1

—4

+4
= —1

—1

+1
= —1

0

—1
= 0

0

+2
= 0

0

—2
= 0

0

+3
= 0

0

—3
= 0

0

+4
= 0

0

—4
= 0

0 +1

+1

—1

+2
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+3
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+4
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A képzés módszere szerint minden racionális számot felsoroltunk, némelyeket többször is.
A piros vonal mentén sorba rendezzük a kapott számokat. A képzés módszere és a felfűzés
sorrendje miatt minden racionális számot figyelembe vettünk, és sorba tudtuk rendezni őket.
Így a racionális számok halmazának számossága egyenlő a természetes számok halmazának
számosságával, vagyis megszámlálhatóan végtelen halmaz.

DEFINÍCIÓ: A valós számok számosságával megegyezõ számosságú halmazokat nem megszám-
lálhatóan végtelen vagy kontinuum számosságú halmazoknak nevezzük. Pl.: irracionális
számok halmaza, számegyenes pontjainak halmaza, intervallum pontjainak halmaza.

TÉTEL: Az [a; b] és a [c; d] intervallumok számossága megegyezik.

BIZONYÍTÁS: Bizonyítás: Ha b - a = d - c, akkor a két intervallum „hossza” egyenlő, így számos-
ságuk is.
Ha b - a π d - c, akkor vegyünk fel párhuzamosan két azonos beosztású számegyenest, áb-
rázoljuk az egyiken az egyik, a másikon a másik intervallumot. Húzzuk meg az a-t és c-t,
valamint a b-t és d-t összekötő e és f egyeneseket. E két egyenes metszi egymást az O pont-
ban. Az O pontból középpontos hasonlósági transzformációval [a; b] intervallum képe [c; d]
intervallum.
Ha az [a; b] intervallum egy pontja P, akkor P-t O-val összekötő egyenes P’ pontban met-
szi a [c; d] intervallumot. Ha a [c; d] intervallum egy pontja Q, akkor Q-t O-val összekötő
egyenes Q’ pontban metszi az [a; b] intervallumot. Így az [a; b] és a [c; d] intervallum min-
den pontja kölcsönösen megfeleltethető egymásnak, tehát ugyanannyi pontból állnak, azaz
számosságuk egyenlő.

a bP Q ’

dc P ’

Q

O

f

e

TÉTEL: Számosság és halmazmûveletek kapcsolata (logikai szita): A, B és C véges halmazok szá-
mosságára érvényesek a következõk:

ΩA » BΩ = ΩAΩ + ΩBΩ - ΩA « BΩ

Ω A B∪ Ω = ΩUΩ - ΩA » BΩ

ΩA » B » CΩ = ΩAΩ + ΩBΩ + ΩCΩ - ΩA « BΩ - ΩA « CΩ - ΩB « CΩ + ΩA « B « CΩ

VII. Alkalmazások
• Racionális számok: arányok, arányosság, hasonlóság

• Irracionális számok: szabályos háromszög magassága 3
2

a⎛ ⎞
⎜ ⎟
⎝ ⎠

, négyzet átlója ( )2a , kör

kerülete (2rp), területe (r2p)

• Kifejezések legbõvebb értelmezési tartományának meghatározása, pl. 12
2

x
x

+ +
−

• Függvény értékkészletének megállapítása
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Matematikatörténeti vonatkozások:

• Az elsõ számírások nem a mai írásjelekkel, hanem szimbólumokkal, jelekkel (pl. ékírás,
római számok) történtek. A mai számírást a XI. században az arab al-Hvárizmi matematikus
írta le elõször. Európába Fibonacci olasz matematikus a XII. században hozta be, de csak
a XV–XVI. században terjedt el. Fibonacci nemcsak a 10 számjegyet, hanem a helyi értékes
számírást is elhozta Európába. „Van tíz hindu jel: 9, 8, 7, 6, 5, 4, 3, 2, 1, 0. Ezen jelek segít-
ségével bármilyen számot fel lehet írni, amit csak akarunk.”

• A zérust jelentõ szó elõször 100 körül jelent meg a hinduknál.
• Az irracionális számokat már Pitagorasz (Kr. e. 450 körül) is ismerte, ekkor a hinduk már

ismerték a négyzet oldalának és átlójának viszonyát.
• A negatív számok viszonylag késõn jelentek meg: az egyenletek megoldásakor kaptak olyan

számokat, amelyeket elõször nem tudtak értelmezni. Cardano (1501–1576) olasz matemati-
kus fiktív számoknak nevezte õket, Viète (1540–1603) francia matematikus elvetette létezé-
süket.

• Descartes francia matematikus 1637-ben már minden elõítélet nélkül használta az általa ha-
mis számoknak nevezett negatív számokat.

• Gauss (1777–1855) német matematikus részletesen tárgyalta a komplex számok algebráját
és aritmetikáját, ahol 1 i− = .

• A halmazelmélet megteremtése Cantor (1845–1918) német matematikushoz fûzõdik. Kor-
társai többsége nem értette meg a végtelen halmazok számosságával kapcsolatos gondolatait:
a természetes számok halmaza valódi részhalmaza a racionális számok halmazának, számos-
ságuk mégis egyenlõ. Meghatározása szerint két halmaz egyenlõ számosságú, ha elemeik
között kölcsönösen egyértelmû hozzárendelés létesíthetõ. Hozzá fûzõdik a megszámlálható
halmazok fogalma. A róla elnevezett Cantor-féle átlós eljárással bizonyította, hogy a valós
számok nem megszámlálhatóak.
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3. Oszthatóság, oszthatósági szabályok és tételek.
Prímszámok. Számrendszerek

Vázlat:
I. Számelméleti alapfogalmak: osztó, többszörös, oszthatóság fogalma, tulajdonságai, osztható-

sági szabályok
II. Prímszám, összetett szám, a számelmélet alaptétele, osztók száma

III. Legnagyobb közös osztó, legkisebb közös többszörös
IV. Számrendszerek
V. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Oszthatóság
Az oszthatóság fogalma esetében alaphalmaznak az egész számok halmazát tekintjük. Két egész
szám hányadosa nem mindig egész szám, az az oszthatóság esetén azt vizsgáljuk, hogy egész szá-
mok osztásakor mikor lesz a hányados is egész szám, vagyis a maradék 0.

DEFINÍCIÓ: Egy a egész szám osztója egy b egész számnak, ha található olyan c egész szám,
amelyre a ◊ c = b. Jelölés: aΩb. (Természetesen cΩb is igaz). Ebben az esetben az is igaz,
hogy b osztható a-val és c-vel. Ekkor azt is mondhatjuk, hogy b többszöröse a-nak.

A 0 szerepe a számelméletben:

• a 0 minden nemnulla egész számnak többszöröse (0-szorosa), azaz 0 minden nemnulla egész
számmal osztható, ugyanis 0 = 0 ◊ a: aΩ0, ha a π 0. Ez azt is jelenti, hogy a 0 páros szám.
A 0-nak egyetlen többszöröse van, a 0, viszont a 0 bármely egész számnak a többszöröse.

• a 0 nem osztója egyetlen nemnulla egész számnak sem, ugyanis ha 0 osztója lenne egy b
nemnulla egész számnak, akkor létezne egy olyan c egész szám, amelyikre b = c ◊ 0 = 0 len-
ne, ami ellentmond annak a feltételnek, hogy b π 0.

Oszthatósági tételek:

Ha a, b, c ŒZ, akkor

TÉTEL: 1Ωa, azaz az 1 minden egész számnak osztója.

BIZONYÍTÁS: a = a ◊ 1.

TÉTEL: aΩa, azaz minden egész szám osztója önmagának.

BIZONYÍTÁS: a = 1 ◊ a.

TÉTEL: Ha aΩb és bΩc fi aΩc.

BIZONYÍTÁS: Az aΩb feltétel azt jelenti, hogy van olyan d egész szám, amelyre b = a ◊ d; a bΩc
feltétel azt jelenti, hogy van olyan e egész szám, amelyre c = b ◊ e teljesül.
Ekkor c = b ◊ e = (a ◊ d) ◊ e = a ◊ (d ◊ e) a szorzás asszociativitása miatt, ahol a d ◊ e szorzat
egész szám.
Ez azt jelenti, hogy van olyan egész szám, amelynek a-szorosa a c szám, vagyis aΩc.
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TÉTEL: Ha aΩb fi aΩb ◊ c, azaz ha egy egész szám osztója egy másik egész számnak, akkor a több-
szöröseinek is osztója.

BIZONYÍTÁS: Az aΩb feltétel azt jelenti, hogy van olyan d egész szám, hogy b = a ◊ d. Ekkor
b ◊ c = (a ◊ d) ◊ c = a ◊ (d ◊ c) a szorzás asszociativitása miatt. A (d ◊ c) szorzat egész, tehát ta-
láltunk megfelelõ egész számot, így aΩb ◊ c.

TÉTEL: Ha aΩb és aΩc fi aΩb ± c, azaz ha egész egy szám osztója két egész számnak, akkor az
összegüknek és a különbségüknek is osztója.

BIZONYÍTÁS: Az aΩb feltétel azt jelenti, hogy van olyan d egész szám, hogy b = a ◊ d. Az aΩc fel-
tétel azt jelenti, hogy van olyan e egész szám, hogy c = a ◊ e. Ekkor b ± c = (a ◊ d) ± (a ◊ e) =
= a ◊ (d ± e) a disztributivitás  miatt. A (d ± e) egész szám, tehát találtunk megfelelõ egész
számot, így aΩb és aΩc fi aΩb ± c.

TÉTEL: Ha aΩb és aΩb + c fi aΩc, azaz ha egy egész szám osztója egy összegnek és az összeg
egyik tagjának, akkor osztója a másik tagnak is.

BIZONYÍTÁS: Az aΩb feltétel azt jelenti, hogy van olyan d egész szám, hogy b = a ◊ d. Az aΩb + c
feltétel azt jelenti, hogy van olyan e egész szám, amire b + c = a ◊ e. Ekkor c = (b + c) - b =
= a ◊ e - a ◊ d = a ◊ (e - d). Mivel e és d egész számok, így különbségük is egész szám. Tehát
találtunk megfelelõ egész számot, amivel a-t szorozva c-t kapunk, így aΩc.

Az oszthatóságot eddig az egész számokra értelmeztük, a továbbiakban leszûkítjük a természetes
számokra, azaz a nemnegatív egész számokra. Egy adott problémánál tudjuk majd automatikusan
alkalmazni az itt megfogalmazottakat az egész számokra.

TÉTEL: Ha a, b ŒZ+, és aΩb, valamint bΩa fi a = b, azaz ha két pozitív egész szám egymásnak
osztója, akkor a két szám egyenlõ.

BIZONYÍTÁS: Az aΩb feltétel azt jelenti, hogy van olyan d egész szám, amire b = a ◊ d, a bΩa fel-
tétel azt jelenti, hogy van olyan e egész szám, amire a = b ◊ e.
Ekkor b = a ◊ d = (b ◊ e) ◊ d = b ◊ (d ◊ e) a szorzás asszociativitása miatt.
Osztva b-vel az egyenlet mindkét oldalát: 1 = d ◊ e, aminek a pozitív egész számok halmazán
csak a d = e = 1 a megoldása.
Ekkor viszont a = b ◊ 1 = b.

Oszthatósági szabályok:

Egy n egész szám osztható
• 2-vel, ha n páros, vagyis utolsó jegye Œ{0; 2; 4; 6; 8}.
• 3-mal, ha a számjegyek összege osztható 3-mal.
• 4-gyel, ha a két utolsó jegybõl képzett szám osztható 4-gyel.
• 5-tel, ha utolsó jegye Œ{0; 5}.
• 6-tal, ha 2-vel és 3-mal osztható.
• 8-cal, ha a három utolsó jegybõl képzett szám osztható 8-cal.
• 9-cel, ha számjegyek összege osztható 9-cel.
• 10-zel, ha utolsó jegye 0.

II. Prímszám, összetett szám, a számelmélet alaptétele, osztók száma

DEFINÍCIÓ: Azokat a pozitív egész számokat, amelyeknek pontosan két pozitív osztója van, prím-
számoknak nevezzük. Pl.: 2; 3; 5; 7; … Az 1 nem prímszám.
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TÉTEL: Végtelen sok prímszám van.

BIZONYÍTÁS: Indirekt módon: Tegyük fel, hogy véges sok, azaz n db prímszám van. Legyenek
ezek p1, p2, p3, ..., pn. Képezzük a következõ számot: A = p1 ◊ p2 ◊ p3 ◊ ... ◊ pn + 1.
Az A számnak a felsorolt n db prím egyike sem osztója. Ebbõl két lehetõség következhet:
vagy az A szám is prím (az n + 1-edik), vagy létezik olyan prím, amit nem soroltunk fel
(akkor ez a prím az n + 1-edik). Tehát mindkét esetben találtunk a felsorolásban nem sze-
replõ prímszámot, ezzel ellentmondásra jutottunk, azaz nem véges sok, hanem végtelen sok
prímszám van.

DEFINÍCIÓ: Azokat az 1-nél nagyobb számokat, amelyek nem prímszámok, összetett számoknak
nevezzük. Az összetett számoknak 2-nél több pozitív osztója van. Pl.: 4; 6; 8; 9; 10; …

TÉTEL: A számelmélet alaptétele: bármely összetett szám felírható prímszámok szorzataként, és
ez a felbontás a tényezõk sorrendjétõl eltekintve egyértelmû.

Kanonikus alak: 1 2 3
1 2 3

k
kn p p p pαα α α= ⋅ ⋅ ⋅ ⋅… , ahol p1, p2, p3, ..., pk különbözõ prímek, a1, a2,

a3, ..., ak nemnegatív egész számok.
Ekkor az n szám prímosztói: p1, p2, p3, ..., pk.

TÉTEL: Meghatározható az n szám osztóinak száma a következõ módon: A fenti n számnak
(a1 + 1) ◊ (a2 + 1) ◊ (a3 + 1) ◊ ... ◊ (ak + 1) darab pozitív osztója van.

DEFINÍCIÓ: Két vagy több pozitív egész szám legnagyobb közös osztója a közös osztók közül a leg-
nagyobb. Jele: (a; b).
Elõállítása: felírjuk a számok prímtényezõs alakját, vesszük a közös prímtényezõket (amelyek
az összes felbontásban szerepelnek), ezeket a hozzájuk tartozó legkisebb kitevõvel vesszük
és összeszorozzuk.

DEFINÍCIÓ: Ha két pozitív egész szám legnagyobb közös osztója 1, akkor a két szám relatív prím.

DEFINÍCIÓ: Két vagy több pozitív egész szám legkisebb közös többszöröse a közös többszörösök
közül a legkisebb. Jele: [a; b].
Elõállítása: felírjuk a számok prímtényezõs alakját, vesszük az összes prímtényezõt, ezeket
a hozzájuk tartozó legnagyobb kitevõvel vesszük és összeszorozzuk.
Összefüggés két pozitív egész szám legnagyobb közös osztója és legkisebb közös többszörö-
se között: (a; b) ◊ [a; b] = a ◊ b.

III. Számrendszerek

DEFINÍCIÓ: Az a alapú számrendszer helyi értékei: 1, a1, a2, a3, a4, ..., az a alapú számrendszer-
ben a-féle számjegy van: 0, 1, 2, ..., a - 1 (alaki érték), ha a > 10, akkor betûket használunk
számjegyként.
A helyi értékes ábrázolás azt jelenti, hogy a számjegyek értékén kívül a leírásuk helye is ér-
tékkel bír. Egymás után írjuk a számjegyeket és az adott ponthoz viszonyítjuk az értéküket.

Általában 10-es számrendszerben dolgozunk. Ez azt jelenti, hogy a helyi értékek 10 természetes
kitevõjû hatványai (100, 101, 102, 103, ..., azaz egyesek, tízesek, százasok, ezresek, ...). A számok
leírására 10-féle számjegyre van szükség: 0, 1, 2, ..., 9.
A 10-es számrendszeren kívül az informatikában gyakran használják a 2-es, vagyis bináris szám-
rendszert (Neumann-elv), napjainkban pedig inkább a 16-os, azaz hexadecimális számrendszert. Ez
utóbbinál merült fel az a probléma, hogyan írjunk le 16-féle számjegyet. Erre az a megoldás született,
hogy a 10-nél nagyobb alapú számrendszerekben a 10, vagy annál nagyobb értékû számjegyeket
betûkkel jelöljük. Így 16-os számrendszerben 10 helyett A, 11 helyett B, …, 15 helyett F a számjegy.
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Áttérés 10-es számrendszerbõl más alapúba

1. módszer:

A számot osztjuk az új számrendszer alapszámával, majd az így kapott hányadost újra mindaddig,
míg 0 hányadost nem kapunk. Az osztásoknál kapott maradékok lesznek az új szám alaki értékei az
egyesektõl kezdve.
Pl. 94810 a 7-es számrendszerbe átírva:

948 = 135 ◊ 7 + 3
135 = 19 ◊ 7 + 20
019 = 2 ◊ 7 + 500
002 = 0 ◊ 7 + 200

2. módszer:

A tízes számrendszerbeli számot maradékosan elosztjuk az új számrendszer legnagyobb, de a számnál
kisebb helyi értékével, a kapott maradékkal ezt addig folytatjuk, amíg a maradék 0 nem lesz.

948 : 343 = 2, maradék 262,
0262 : 49 = 5, maradék 17, 0

0017 : 7 = 2, maradék 3, 0
00003 : 1 = 3, maradék 0, 00

Így 94810 = 25237.

Áttérés más alapúból 10-es számrendszerbe

A megfelelõ helyi értékeknek és a hozzájuk tartozó alaki értékeknek a szorzatösszege adja a 10-es
számrendszerbeli értéket:
Pl.: 25237 a 10-es számrendszerbe átírva:

25237 = 2 ◊ 73 + 5 ◊ 72 + 2 ◊ 71 + 3 ◊ 1 = 94810

A mûveletek elvégezhetõk az adott számrendszerben, vagy tízes számrendszerben és az eredmény
adott számrendszerbe való visszaírásával.

Összeadás n alapú számrendszerben

Helyi érték szerint egymás alá írjuk a számokat, akár többet is. Az összeadást az n0 = 1-es helyi ér-

téken kezdjük, majd folytatjuk az n1, n2, n3, ... helyi értékek felé. Mi 10-es számrendszerben tu-
dunk összeadni, így az összegeket mindig 10-esben kapjuk meg, majd a kapott eredményt átváltjuk
n-es számrendszerbe.
Ha az összeg n-nél kisebb, akkor leírjuk, mert n-nél kisebb számok minden számrendszerben azo-
nos alakúak.
Ha az összeg nagyobb vagy egyenlõ n-nél, akkor a kapott számot átírjuk 10-es számrendszerbõl
n-es számrendszerbe. A kapott szám utolsó számjegyét leírjuk a megfelelõ helyi értékre, az elsõ
számjegyét pedig az elõzõ helyi érték fölé írjuk.
Ezt az eljárást addig folytatjuk, amíg a legelsõ számjegyig nem jutunk.
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Kivonás n alapú számrendszerben

Helyi érték szerint egymás alá írjuk a számokat. Az összeadást az n0 = 1-es helyi értéken kezdjük,

majd folytatjuk az n1, n2, n3, ... helyi értékek felé.
Ha a kisebbítendõ nagyobb vagy egyenlõ a kivonandónál, akkor elvégezzük a kivonást, a különb-
séget leírjuk a megfelelõ helyi értékre. Mivel n-nél kisebb értéket kapunk, nem kell átváltanunk,
mert n-nél kisebb számok értéke minden számrendszerben egyenlõ.
Ha a kisebbítendõ (a) kisebb, mint a kivonandó (b), akkor 1 na  = (n + a)10-ból vonjuk ki b-t, leírjuk

a megfelelõ helyi értékre az (n + a - b)10 számot, az elõzõ helyi értéken levõ kivonandóhoz 1-et
adunk, és így végezzük el a kivonást.
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IV. Alkalmazások:
• Legnagyobb közös osztó: törtek egyszerûsítése
• Legkisebb közös többszörös: törtek közös nevezõre hozása
• Kétismeretlenes egyenlet megoldása a természetes számok halmazán (oszthatóság felhasz-

nálásával) pl.:

3 2
3 2
3 ( 2)

3 3 6 6 63 2 6
2 2 2 2

x y xy
x xy y
x y x

x xy x
x x x x

+ =
= −
= −

−= = + = + ∈ ⇒ −
− − − −

N Ω

Ez a következõ esetekben lehetséges:

x - 2 1 2 3 6 -1 -2 -3 -6

x 3 4 5 8 1 0 -1 -4

y 9 6 5 4 -3 0 1 2

A táblázatban szerepel az összes megoldás, az 5 megjelölt számpár felel meg a feltételnek.
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• Számítógépekben a 2-es számrendszer a két jegyével jól használható: folyik áram = 1, nem
folyik áram = 0 (Neumann-elv). Ma már inkább a 16-os, hexadecimális számrendszert hasz-
nálják, ami felépíthetõ a kettesbõl.

Matematikatörténeti vonatkozások:

• Az egyiptomi Rhind-papiruszon (Kr. e. 2000–1700) a „törzstörtek” felsorolásában csak a pá-
ratlan nevezõjû törtek szerepeltek, tehát az egyiptomiak különbséget tettek a páros és a párat-
lan számok között.

• Az öttel való oszthatóságot az ókori hinduk is ismerték.
• A hárommal való oszthatóság szabályát elõször a pizai Leonardo írta le (1200 körül).
• A tizeneggyel való oszthatóság szabályát a XI. századi arab matematikusok ismerték, vi-

szont szabatosan csak Lagrange (1736–1813) francia matematikus fogalmazta meg: a páros
helyi értéken álló számjegyeinek összege megegyezik a páratlan helyi értéken álló számje-
gyek összegével, vagy a kettõ különbsége 11-nek a többszöröse.

• Pascal (1623–1662) francia matematikus teljes általánosságban vizsgálta az oszthatóságot
a természetes számok körében.

• Prímszámok meghatározása az eratoszthenészi (Kr. e. III. század) szitával: Felírjuk 2-tõl
kezdõdõen az egész számokat (õ 100-ig csinálta). A 2-t bekeretezzük, ez az elsõ prímszám,
majd kihúzzuk az összes olyan számot, ami 2 többszöröse (minden másodikat). Bekeretez-
zük az elsõ át nem húzott számot, a 3-at, ez a következõ prímszám. Innen kezdve áthúzzuk
a 3 többszöröseit (minden harmadikat). Ezt az eljárást folytatva megkapjuk a prímszámokat
(bekeretezett számok).

• A sumérok (Kr. e. 2000 elõtt) a 10-es, 12-és és 60-as alapú számrendszer kombinációját hasz-
nálták az asztronómiai és egyéb számításaiknál. Ezt a rendszert átvették a görögök, a rómaiak
és az egyiptomiak. A 60-as számrendszer maradványait felismerhetjük a mai idõ- (órák, per-
cek) és a szögmérésben (szögpercek).

• A 12-es számrendszer nagyon népszerû volt, mert a 12 maradék nélkül osztható 2-vel
(felezhetõ), 3-mal (harmadolható), 4-gyel (negyedelhetõ), 6-tal (hatodolható). A ma használt
naptárban az év 12 hónapra oszlik, 12 óra a nappal és 12 óra az éjszaka az év mind a 365 nap-
ján. Csaknem minden nyelvben külön szó van a 12 dologból álló csoportra, például a magyar
„tucat”, az angol „dozen”, a német „das Dutzend”, az orosz „djuzsina” stb.

• Nyelvészeti kutatások szerint az õsmagyarok a hetes számrendszert ismerték, használták:
mesék hétfejû sárkánya, hetedhét ország, hétmérföldes csizma, hétpecsétes titok, hétszerte
szebb lett stb.

• A 2-es alapú bináris számrendszert már a XVII. században Leibniz ismertette, aki Kínában
hallott róla, de általános használata a XX. században, a számítógépek megjelenésével terjedt
el.

• Neumann János (1903–1957) magyar származású matematikus a róla elnevezett elvben
megfogalmazta a számítógépek mûködési elvét. Ebben a számítógépek használjanak kettes
számrendszert, az összes mûvelet kettes számrendszerbeli logikai mûveletre redukálható.
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4. A matematikai logika elemei. Logikai mûveletek.
Állítás és megfordítása, szükséges és elégséges feltételek,
bemutatásuk a tételek megfogalmazásában és bizonyításában

Vázlat:
I. A matematikai logika fogalma

II. Logikai mûveletek: tagadás, „és” (konjunkció), „megengedõ vagy” (diszjunkció), „kizáró
vagy”, ha A, akkor B (implikáció), A akkor és csak akkor, ha B (ekvivalencia)

III. Logikai mûveletek (konjunkció és diszjunkció) tulajdonságai
IV. Állítás és megfordítása

Szükséges és elégséges feltétel, bemutatásuk
V. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. A matematikai logika fogalma
A matematikai logika a gondolkodás matematikai formában kifejezhetõ, matematikai eszközökkel
vizsgálható összefüggéseinek, törvényeinek feltárásával foglalkozik. Fõ feladata a következtetések
helyességének vizsgálata.

II. Logikai mûveletek

DEFINÍCIÓ: Az állítás (vagy kijelentés) olyan kijelentõ mondat, amelyrõl egyértelmûen el lehet
dönteni, hogy igaz vagy hamis.

DEFINÍCIÓ: Az igaz és a hamis a kijelentés logikai értéke.
Ha az A állítás igaz, a B állítás hamis, akkor úgy is mondhatjuk, hogy az A logikai értéke
igaz, B logikai értéke hamis. Jelekkel: ΩAΩ= i  és ΩBΩ= h.
Az igaz értéket szokták 1-gyel, a hamis értéket 0-val jelölni.

DEFINÍCIÓ: A kijelentéseket összekapcsolhatjuk. Azokat a kijelentéseket, amelyeket más kijelenté-
sekbõl lehet elõállítani, összetett kijelentéseknek nevezzük.

DEFINÍCIÓ: Ha az összetett kijelentések logikai értéke csak az õt alkotó állítások logikai értékétõl
és az elõállítás módjától függ, akkor logikai mûveletekrõl beszélünk.
A logikai mûveleteket igazságtábla segítségével végezhetjük el.

DEFINÍCIÓ: Az állítás tagadása egyváltozós mûvelet. Egy A kijelentés negációja (tagadása) az a ki-
jelentés, amely akkor igaz, ha A hamis, és akkor hamis, ha A igaz.
Jele: A  vagy ÿA.

TÉTEL: Egy állítás tagadásának tagadása maga az állítás (kettõs tagadás törvénye). Jele: = .A A

TÉTEL: Egy állítás és tagadása nem lehet egyszerre igaz (az ellentmondás-mentesség elve).

TÉTEL: Egy állítás és tagadása nem lehet egyszerre hamis (a harmadik kizárásának elve).

DEFINÍCIÓ: Két, A-tól és B-tõl függõ állítás akkor egyenlõ, ha A és B minden lehetséges logikai
értékére a két állítás igazságértéke egyenlõ.
A logikai mûveletek eredménye csak a tagok logikai értékétõl függ.
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Kétváltozós logikai mûveletek:

DEFINÍCIÓ: Állítások konjunkciója: logikai „és”: Két kijelentés konjunkciója pontosan akkor
igaz, ha mindkét kijelentés igaz, különben hamis.
Jele: A Ÿ B.

DEFINÍCIÓ: Állítások diszjunkciója: logikai „megengedõ vagy”: Két kijelentés diszjunkciója
pontosan akkor igaz, ha legalább az egyik kijelentés igaz, különben hamis.
Jele: A ⁄ B.

DEFINÍCIÓ: Állítások antivalenciája: logikai „kizáró vagy” akkor igaz, ha pontosan az egyik állí-
tás igaz, a másik hamis, akkor hamis, ha a két állítás logikai értéke megegyezik.
Jele: A ≈ B.

Igazságtáblával:

A B A Ÿ B A B A ⁄ B A B A ≈ B

i i i i i i i i h
i h h i h i i h i
h i h h i i h i i
h h h h h h h h h

DEFINÍCIÓ: Állítások implikációja: A „ha A, akkor B” kapcsolatnak megfelelõ logikai mûveletet
implikációnak nevezzük. Az implikáció logikai értéke pontosan akkor hamis, ha A igaz és B
hamis, különben az implikáció igaz. Az A állítást feltételnek, B-t következménynek nevezzük.
A következtetés csak akkor hamis, ha a feltétel igaz, de a következmény hamis. Hamis állí-
tásból bármi következhet.
Jele: A Æ B.

DEFINÍCIÓ: Állítások ekvivalenciája: Az „A akkor és csak akkor B” kapcsolatnak megfelelõ logi-
kai mûveletet ekvivalenciának nevezzük. Az ekvivalencia logikai értéke pontosan akkor
igaz, ha A és B logikai értéke azonos, különben hamis.
Ha az A ´ B igaz, akkor azt mondjuk, hogy A és B állítások ekvivalensek egymással.
Jele: A ´ B.
Igazságtáblával:

A B A Æ B A B A ´ B

i i i i i i
i h h i h h
h i i h i h
h h i h h i

TÉTEL: Tetszõleges A és B kijelentésekre = .A B A BÆ ⁄

BIZONYÍTÁS: Igazságtáblával:

A B A A  ⁄ B A Æ B

i i h i i
i h h h h
h i i i i
h h i i i

A negyedik oszlop igazságértékei megegyeznek az implikáció igazságértékeivel, tehát az
egyenlõség A és B minden lehetséges logikai értékére fennáll, azaz azonosság.
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TÉTEL: Tetszõleges A és B kijelentésekre A ´ B = (A Æ B) Ÿ (B Æ A)

BIZONYÍTÁS: Igazságtáblával:

A B A Æ B B Æ A (A Æ B) Ÿ (B Æ A) A ´ B

i i i i i i
i h h i h h
h i i h h h
h h i i i i

Az ötödik oszlop igazságértékei megegyeznek az ekvivalencia igazságértékeivel, tehát az
egyenlõség A és B minden lehetséges logikai értékére fennáll, azaz azonosság.

III. Logikai mûveletek (konjunkció és diszjunkció) tulajdonságai

Tulajdonság Diszjunkció Konjunkció

Kommutatív
(felcserélhetõ)

A ⁄ B = B ⁄ A A Ÿ B = B Ÿ A

Asszociatív
(csoportosítható)

(A ⁄ B) ⁄ C = A ⁄ (B ⁄ C) (A Ÿ B) Ÿ C = A Ÿ (B Ÿ C)

Disztributív
(széttagolható)

A ⁄ (B Ÿ C) = (A ⁄ B) Ÿ (A ⁄ C) A Ÿ (B ⁄ C) = (A Ÿ B) ⁄ (A Ÿ C)

De Morgan-azo-
nosságok

A B A B∨ = ∧   és  A B A B∧ = ∨

További
azonosságok

A ⁄ A = A
A ⁄ A  = i

=A A

A Ÿ A = A
A Ÿ A  = h

III. Állítás és megfordítása, szükséges és elégséges feltétel

Az állításokat gyakran „Ha A igaz, akkor B igaz” (A fi B) formában fogalmazzuk meg. Tehát egy
A állítás igazságából következik egy B állítás igazsága (vagyis, ha az A Æ B implikáció igaz), azt
mondjuk, hogy az A állításból következik B állítás, vagy azt, hogy A állítás a B állításnak elégséges
feltétele (hiszen a B állítás igazságának bizonyításához elég az A állítás igazságát bizonyítani).
Ilyenkor a B állítás az A állításnak szükséges feltétele (hiszen az A állítás nem lehet igaz, ha a B
állítás nem igaz). Ha ilyen esetben az A állítás igazságából a B állítás igazságára következtetünk, az
helyes következtetés.
Ha azt akarjuk kimutatni, hogy az A állításból nem következik a B állítás, elég egyetlen példát
mutatni olyan esetre, amikor A igaz és B hamis. Ha ilyen esetben A állításból a B állításra követ-
keztetünk, az nem helyes, vagyis helytelen következtetés.
Ha az A állításból következik B állítás, és fordítva is: a B állításból következik az A állítás, akkor
azt mondjuk, hogy az A állításnak a B állítás szükséges és elégséges feltétele. Jele: A ¤ B (A akkor
és csak akkor igaz, amikor B).
Ez azt jelenti, hogy A és B egyszerre igaz, vagyis ekvivalensek (egyenértékûek).

Példák feltételekre:

• Állítás: Ha egy szám osztható 4-gyel, akkor osztható 2-vel. Ez igaz állítás.
Ekkor a 4-gyel való oszthatóság elégséges feltétele a 2-vel való oszthatóságnak, a 2-vel való
oszthatóság szükséges feltétele a 4-gyel való oszthatóságnak. Vagyis a 4-gyel való osztható-
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ság elégséges, de nem szükséges feltétele a 2-vel való oszthatóságnak, valamint a 2-vel való
oszthatóság szükséges, de nem elégséges feltétele a 4-gyel való oszthatóságnak.

• Állítás: Ha egy szám osztható 2-vel, akkor osztható 4-gyel. Ez hamis állítás.
Ekkor a 2-vel való oszthatóság nem elégséges feltétele a 4-gyel való oszthatóságnak, a 4-
gyel való oszthatóság elégséges feltétele a 2-vel való oszthatóságnak. Vagyis a 2-vel való
oszthatóság nem elégséges, de szükséges feltétele a 4-gyel való oszthatóságnak, valamint
a 4-gyel való oszthatóság elégséges, de nem szükséges feltétele a 2-vel való oszthatóságnak.

Egy tétel feltételeinek és feltételei következményeinek a felcserélésével kapjuk a tétel megfordítását.
Így a fenti tétel megfordítása: „Ha B igaz, akkor A igaz.” (B fi A)
Ha a tétel és a megfordítása is igaz, akkor a két tétel ekvivalens. (A ¤ B)
Erre példa a Thalész-tétel, valamint a Pitagorasz-tétel:

TÉTEL: Thalész-tétel: Ha egy kör átmérõjének két végpontját összekötjük a kör bármely más
pontjával, akkor derékszögû háromszöget kapunk.

BIZONYÍTÁS: O középpontú kör, AB átmérõ, C tetszõleges pont a körvonalon.

A

C

O

a b
B

a b

OA = OC = r  fi  OAC háromszög egyenlõ szárú  fi  OAC¬ = OCA¬ = a.
OC = OB = r  fi  OBC háromszög egyenlõ szárú  fi  OBC¬ = BCO¬ = b.
Az ABC háromszög belsõ szögeinek összege 180º  fi  2a + 2b = 180º  fi  a + b = 90º  fi
ACB¬ = 90º.

TÉTEL: A Thalész-tétel megfordítása: Ha egy háromszög derékszögû, akkor köré írható körének
középpontja az átfogó felezõpontja.

BIZONYÍTÁS: ABC derékszögû háromszöget tükrözzük az átfogó F felezõpontjára. A tükrözés
tulajdonságai miatt BC = AC’ és CA = BC’ és AC’BC négyszög szögei 90º-osak. Az olyan
négyszög, amelynek két-két szemközti oldala egyenlõ hosszú és mind a négy szöge derék-
szög, az téglalap. A téglalap átlói egyenlõk és felezik egymást fi FA = FB = FC fi F az
ABC háromszög köré írt kör középpontjával egyenlõ.

C A

B C’

F

a

a
b

b

TÉTEL: A Thalész-tétel és megfordítása összefoglalva: A sík azon pontjainak halmaza, amelyek-
bõl egy megadott szakasz derékszögben látszik, a szakaszhoz mint átmérõhöz tartozó kör,
elhagyva belõle a szakasz végpontjait.

TÉTEL: Pitagorasz-tétel: Ha egy háromszög derékszögû, akkor a befogók négyzetének összege
egyenlõ az átfogó négyzetével.
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BIZONYÍTÁS: (14. tétel)

a

b

a

a

a
aa

a

a

a

a

a b+ 90º=

bb

b

b

b b

b

b

a

a

b

b

b

t3

t2

t1
c

c

c

c

a

a

a

a

b

b

b

b

g

g

g

g

a2 + b2 + 4t = c2 + 4t
 + 4ta2 + b2 = c2

TÉTEL: A Pitagorasz-tétel megfordítása: Ha egy háromszög két oldalhosszának négyzetének
összege egyenlõ a harmadik oldal négyzetével, akkor a háromszög derékszögû.

BIZONYÍTÁS: (14. tétel)
Tudjuk, hogy a2 + b2 = c2.
Tegyük fel, hogy a háromszög nem derékszögû. Ekkor tudunk szerkeszteni olyan derékszö-
gû háromszöget, amelynek a befogói a és b, átfogója legyen c’. Mivel ez derékszögû három-
szög, a Pitagorasz-tétel miatt: a2 + b2 = (c’)2. Az eredeti feltétellel összevetve c2 = (c’)2,
amibõl pozitív mennyiségekrõl lévén szó, következik, hogy c = c’.
Ez ellentmond a kiinduló feltételnek, így a háromszög derékszögû.

IV. Alkalmazások:
• Matematikai definíciók, tételek pontos kimondása, tételek bizonyítása
• Tétel megfordításának kimondása
• Bizonyítási módszerek kidolgozása (direkt, indirekt, skatulyaelv, teljes indukció)
• A kombinatorika és a valószínûségszámítás használja a logikai mûveleteket és azok tulaj-

donságait
• Automaták tervezése problémák részekre bontásával
• A logikai mûveletek és halmazmûveletek párhuzamba állíthatók
• Egyenletek, egyenlõtlenségek megoldása során sokszor végzünk logikai mûveleteket (ekvi-

valens átalakítások).

Matematikatörténeti vonatkozások:

• Az ókori filozófia vetette fel azokat a kérdéseket, amelyek vizsgálata a logika kialakulásához
vezetett. A görög „logosz” szó jelentése gondolat, igazság, a görög „logiké” szó érvelést, kö-
vetkeztetést jelent. A logika segíti a definíciók, állítások pontos megfogalmazását, fontos
szerepe van a problémák megfogalmazásában, a tudományos, alkotó kommunikációban.

• Boole (1815–1864) angol matematikus vezette be a kijelentések szerkezetének szimbólu-
mokkal és mûveletekkel való leírását. Az általa létrehozott algebra célja az volt, hogy össze-
kösse a logikát a matematikával, ez a Boole-algebra. Az 1930-as években Shannon (1916–
2001) amerikai matematikus a Boole-algebrát felhasználva az elektromos kapcsolók tulaj-
donságait használta a logikai mûveletekhez, ez lett az elméleti alapja a digitális korszaknak,
az információelméletnek.

• de Morgan (1806–1871) angol matematikus bevezette a ma De Morgan-azonosságként
ismert szabályokat. Ezzel nagyban hozzájárult a matematikai logika megreformálásához, je-
lölésrendszerének egyszerûbbé tételéhez.
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5. Hatványozás, a hatványfogalom kiterjesztése,
a hatványozás azonosságai. Az n-edik gyök fogalma.
A négyzetgyök azonosságai.
Hatványfüggvények és a négyzetgyökfüggvény

Vázlat:
I. Pozitív egész kitevõjû hatványok, a hatványozás azonosságai

II. Permanenciaelv
III. Negatív egész, törtkitevõs, irracionális kitevõjû hatvány
IV. Az n-edik gyök fogalma (n ŒN+, n π 1)
V. A négyzetgyök azonosságai

VI. Hatványfüggvények és azok tulajdonságai
VII. Négyzetgyökfüggvény és tulajdonságai

VIII. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Pozitív egész kitevõjû hatványok
A hatványozást ugyanaz az igény hívta létre, mint a szorzást. A szorzás az ismételt összeadást je-
lenti, a hatványozást azonos számok szorzására vezették be, késõbb kiterjesztették az értelmezését.

DEFINÍCIÓ: Ha a tetszõleges valós szám és n 1-nél nagyobb természetes szám, akkor an hatvány
azt az n tényezõs szorzatot jelenti, amelynek minden tényezõje a.
Ha n = 1, akkor a1 = a.
Az a számot a hatvány alapjának, az n számot a hatvány kitevõjének nevezzük, ez utóbbi
megmutatja, hogy a hatványalapot hányszor kell szorzótényezõül venni.

A hatványozás azonosságai pozitív egész kitevõ esetén: (a, b ŒR, m, n ŒN+)

TÉTEL: Azonos alapú hatványok szorzása: Azonos alapú hatványokat úgy is szorozhatunk, hogy
a közös alapot a kitevõk összegére emeljük:

am ◊ an = am + n

BIZONYÍTÁS:

hatv. def. szorzás hatv. def.
dbdb db asszoc.

( ) ( )m n m n

m nm n

a a a a a a a a a a a a +

+
⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ =… … …��	�
��	�
 ��	�
 .

TÉTEL: Azonos alapú hatványok osztása: Azonos alapú hatványokat úgy is oszthatunk, hogy
a közös alapot a kitevõk különbségére emeljük:

m
m n

n
a a
a

−= ,  ha a π 0, m > n.

BIZONYÍTÁS:
db db

hatv. def. egysze- hatv. def.
rûsítés

db

1

m m n

m
m n

n

n

a a a a a a a a
a a aa

−

−⋅ ⋅ ⋅ ⋅ ⋅ ⋅= = =
⋅ ⋅ ⋅


���� 
����
… …
…��	�


.
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TÉTEL: Szorzat hatványozása: Szorzatot tényezõként is hatványozhatunk:

(a ◊ b)n = an ◊ bn

Tétel „visszafele” olvasva: Azonos kitevõjû hatványokat úgy is szorozhatunk, hogy az ala-
pok szorzatát a közös kitevõre emeljük.

BIZONYÍTÁS:

hatv. def. szorzás szorzás
db asszoc. kommut.

( ) ( ) ( ) ( )n

n

a b a b a b a b a b a b a b⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =… …�����	����


= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅… …��	�
 ��	�

hatv. def.

 db  db

n n

n n

a a a b b b a b .

TÉTEL: Tört hatványozása: Törtet úgy is hatványozhatunk, hogy a számlálót és a nevezõt külön-
külön hatványozzuk és a kapott hatványoknak a kívánt sorrendben a hányadosát vesszük.

( )n n

n
a a
b b

= ,  ha b π 0.

Tétel „visszafele” olvasva: Azonos kitevõjû hatványokat úgy is oszthatunk, hogy az alapok
hányadosát a közös kitevõre emeljük.

BIZONYÍTÁS:

( ) ( ) ( ) ( )
db

hatv. def. törtek hatv. def.
szorzása

dbdb

n
n n

n

nn

a a a a a a a a
b b b b b b b b

⋅ ⋅ ⋅= ⋅ ⋅ ⋅ = =
⋅ ⋅ ⋅


����
……
…��	�
���	��


.

TÉTEL: Hatvány hatványozása: Hatványt úgy is hatványozhatunk, hogy az alapot a kitevõk szor-
zatára emeljük:

(an)m = an ◊ m.

BIZONYÍTÁS:
⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= … … … … …��	�
 ��	�
 ��	�
����	���

���������	��������


. hatv. def. szorzás. hatv. def. db db dbdb asszoc.

db

( ) ( ) ( ) ( )n m n n n

nm n n nm

m

a a a a a a a a a a a a a

hatv. def.
db

m n

m n

a a a a a a a ⋅

⋅
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =" …����	���
 .

II. Permanenciaelv
A hatványozás fogalmát kiterjesztjük minden egész kitevõre, majd egész kitevõrõl racionális kite-
võre, majd racionálisról irracionális kitevõre úgy, hogy az elõbbi, pozitív egész kitevõre teljesülõ
azonosságok továbbra is teljesüljenek. A fogalom értelmezésének kiterjesztése esetén ezt az igényt
nevezzük permanenciaelvnek.

III. A hatványozás kiterjesztése

A 2. azonosság segítségével a hatványozás fogalma kibõvíthetõ az egész számokra a következõ
módon:

DEFINÍCIÓ: Tetszõleges a π 0 valós számra a0 = 1. Minden nullától különbözõ valós számnak
a nulladik hatványa 1.
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00-t nem értelmezzük (nem lehet úgy értelmezni, hogy összhangban legyen a hatványozás értelme-
zéseivel:

• 00 = 0 kellene, hogy legyen, mert 0 minden pozitív egész kitevõ hatványa 0.
• 00 = 1 kellene, hogy legyen, mert minden egyéb szám nulladik hatványa 1.)

Bizonyítható, hogy ezzel az értelmezéssel a hatványozás azonosságai érvényben maradnak.
Pl.

 
0 0

0 1

n n n

n n n
a a a a
a a a a

+ ⎫⋅ = =
⎬⋅ = ⋅ = ⎭

DEFINÍCIÓ: Tetszõleges a π 0 valós szám és n pozitív egész szám esetén 1n
n

a
a

− = . Minden 0-tól

különbözõ valós szám negatív egész kitevõjû hatványa a szám megfelelõ pozitív kitevõjû
hatványának a reciproka (vagy a szám reciprokának a megfelelõ pozitív kitevõjû hatványa).

Bizonyítható, hogy ezzel az értelmezéssel a hatványozás azonosságai érvényben maradnak.
Pl.

0 1
1 1

n n n n

n
n n n

n n

a a a a
aa a a

a a

− − +

−

⎫⋅ = = = ⎪
⎬⋅ = ⋅ = = ⎪⎭

Ezzel a két definícióval a 2. azonosság igaz minden n, m ŒZ-re:

Ha n = m, akkor 1
m m

n m
a a
a a

= = .

Ha m < n, akkor m darab a-val egyszerûsítünk, a számlálóban 1, a nevezõben pedig n - m darab

a szorzótényezõ marad, ami a hatvány definíciója miatt 1
n ma − . Alkalmazva a negatív egész kite-

võjû hatvány definícióját 
( )

1 1 m n
n m m n

a
a a

−
− − −= = .

A hatványozás fogalmát ezután racionális kitevõre terjesztjük ki:

DEFINÍCIÓ: Az a pozitív valós szám 
p
q

-adik hatványa az a pozitív valós szám, amelynek q-adik

hatványa ap, azaz ( )qp
pqa a= .

A definícióból következik: 
p

q pqa a= .
Az alap csak pozitív szám lehet, mert például

12 1 1
2 44 4 2( 2) ( 2) 4 2 2⎡ ⎤− = − = = =⎣ ⎦  értelmes,

2 1
4 2( 2) ( 2) 2− = − = −  nem értelmezhetõ, pedig a két hatvány értékének (azonos alap, azonos

kitevõ) meg kell egyeznie.
Bizonyítható, hogy ezzel az értelmezéssel a hatványozás azonosságai érvényben maradnak.
Pl.

 
( )
( ) ( )

nk k n kn n

nk nn k kn

a a a

a a a

⋅ ⎫
⎪= =
⎬
⎪= = ⎭

A hatványozást kiterjeszthetjük tetszõleges valós kitevõre. Ehhez az irracionális kitevõt kell ér-
telmeznünk.
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Az értelmezés azon alapul, hogy bármely irracionális szám tetszõlegesen közelíthetõ két oldalról

racionális számokkal. Így ha pl.: 22  hatványt szeretnénk meghatározni, akkor ehhez a 2  értékét
közelítjük nála kisebb, illetve nála nagyobb racionális számokkal, majd a közelítõ értékekre mint

kitevõre emeljük a 2-t. Bizonyítható, hogy 22  értéke létezik, és ily módon tetszõlegesen közelít-
hetõ (rendõrelv).

DEFINÍCIÓ: Az a pozitív valós szám a irracionális kitevõjû hatványa, azaz aa jelentse az ar so-
rozat határértékét, ahol r egy racionális számsorozat tagjait jelöli és r Æ a. Képlettel:
lim r

r
a aα

α→
= .

IV. Az n-edik gyök fogalma
A gyökvonás mûvelete a hatványkitevõ és a hatvány ismeretében az alap kiszámolását teszi lehetõ-
vé. A gyökvonás a hatványozás egyik fordított mûvelete: az a valós szám n-edik gyöke (n ŒZ+,
n π 1) az xn = a egyenlet megoldása.

Az a szám n-edik gyökének jelölése: n a , ha n ŒN+.
A gyökvonás értelmezésénél különbséget kell tenni a páros és páratlan gyökkitevõ között (hiszen
páros n-re és negatív a-ra az xn = a egyenletnek nincs megoldása, mivel a valós számok páros kite-
võjû hatványa nem lehet negatív. Tehát páros n-re és negatív a-ra az a szám n-edik gyöke nem
értelmezhetõ.)

DEFINÍCIÓ: Egy a valós szám (2k + 1)-edik (k ŒN+) gyökén azt a valós számot értjük, amelynek
(2k + 1)-edik hatványa a.

Képlettel: ( )2 12 1 kk a a
++ = , ahol k ŒZ+.

DEFINÍCIÓ: Egy nemnegatív valós a szám 2k-adik (k ŒN+) gyökén azt a nemnegatív valós számot
értjük, amelynek 2k-adik hatványa a.

Képlettel: ( )22 kk a a= , ahol a ≥ 0,  2 0,k a ≥  k ŒZ+.

DEFINÍCIÓ: Egy nemnegatív valós a szám négyzetgyökén azt a nemnegatív valós számot értjük,
amelynek négyzete a.

Képlettel: ( ) =
2

a a , ahol a ≥ 0,  ≥ 0.a
A páros és páratlan gyökkitevõre vonatkozó definíciók közötti különbségbõl adódóan:
( )2 2k ka a=Ω Ω és ( )2 1 2 1k ka a+ + = , pl. 66 ( 5) 5− = , de 55 ( 5) 5− = − .

V. A négyzetgyök azonosságai

TÉTEL: ⋅ = ⋅a b a b , ha a, b nemnegatív valós számok.
Szorzat négyzetgyöke egyenlõ a tényezõk négyzetgyökének szorzatával. Tehát szorzatból
tényezõnként vonhatunk gyököt.

BIZONYÍTÁS: Vizsgáljuk mindkét oldal négyzetét:

( )⋅ = ⋅
2

a b a b ,
a négyzetgyök definíciója miatt.

( ) ( ) ( )⋅ = ⋅ = ⋅
2 2 2

a b a b a b ,

a szorzat hatványának azonossága és a négyzetgyök definíciója miatt.
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A két oldal négyzete egyenlõ.
Ha mindkét oldal értelmes, vagyis nemnegatív, akkor a hatványozás azonosságából követke-
zik a két oldal egyenlõsége.

TÉTEL: =a a
b b

, ha a, b nemnegatív valós számok, b π 0.

Tört négyzetgyöke egyenlõ a számláló és a nevezõ négyzetgyökének hányadosával.

TÉTEL: ( )=
kka a , ha k egész, a > 0 valós szám.

A hatványozás és a gyökvonás sorrendje felcserélhetõ egymással pozitív alap esetén.
Figyelni kell arra, hogy a négyzetre emelés és a négyzetgyökvonás sorrendje nem cserélhetõ

fel, ha az alap negatív. Így általánosan: =2 .a a

VI. Hatványfüggvények és azok tulajdonságai

DEFINÍCIÓ: Az f: R Æ R, f(x) = xn függvényt, ahol n ŒN+, hatványfüggvénynek nevezzük.
A hatványfüggvények értelmezhetõek n = 0 esetre is, de ettõl most eltekintünk.
A hatványfüggvény vizsgálatát két részre kell bontanunk aszerint, hogy n páros-e vagy páratlan.

Jellemzés:

A függvény f: R Æ R, f(x) = x2k g: R Æ R, g(x) = x2k + 1

ábrázolása:

x

y

1

1

y=x2k

x

y

1

1

y=x2 +1k

értelmezési tartománya: valós számok halmaza: R valós számok halmaza: R
értékkészlete: nemnegatív valós számok halma-

za: R0
+

valós számok halmaza: R

monotonitása: ha x < 0, akkor szigorúan mono-
ton csökken, ha x > 0, akkor szi-

gorúan monoton nõ

szigorúan monoton nõ

szélsõértéke: abszolút minimuma van az x = 0
helyen, a minimum értéke

f(x) = 0.

nincs

görbülete: alulról konvex ha x < 0, akkor alulról konkáv,
ha x > 0, akkor alulról konvex

zérushelye: x = 0 x = 0

paritása: páros: f(-x) = f(x) páratlan, vagyis g(-x) = -g(x)

korlátosság: alulról korlátos, felülrõl nem
korlátos

nem korlátos

invertálhatóság: invertálható, ha x ≥ 0: inverze az

f-1: R0
+ Æ R, f-1(x) = 2k x

függvény

invertálható: inverze az
g-1: R Æ R, g-1(x) = 2 1k x+

  függvény
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Görbület szempontjából külön kell venni az n = 1 esetet: ekkor a függvény se nem konvex, se nem
konkáv.
A hatványfüggvények folytonosak, minden pontban deriválhatóak, minden korlátos intervallumon
integrálhatóak.

VII. Négyzetgyökfüggvény és tulajdonságai

DEFINÍCIÓ: Az f: R0
+ Æ R, f(x) = x  függvényeket négyzetgyökfüggvényeknek nevezzük.

Jellemzés:

A függvény f: R0
+ Æ R, f(x) = x

ábrázolása:

x

y

1

1

=y x

értelmezési tartománya: nemnegatív valós számok halmaza: R0
+

értékkészlete: nemnegatív valós számok halmaza: R0
+

monotonitása: szigorúan monoton nõ

szélsõértéke: abszolút minimuma van az x = 0 helyen, a minimum értéke f(x) = 0

görbülete: alulról konkáv

zérushelye: x = 0

paritása: nincs: nem páros, nem páratlan

korlátosság: alulról korlátos, felülrõl nem korlátos

invertálhatóság: invertálható: inverze az f-1: R0
+ Æ R, f-1(x) = x2 függvény

A gyökfüggvények folytonosak, differenciálhatóak, integrálhatóak.

Példák négyzetgyökfüggvényre:

( ) 1 2f x x= + − ( ) 1 2f x x= − + +

x

y

1

1

x

y

1

1
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( ) 1 2 ( 1) 2f x x x= − + = − − + ( ) 1 2 ( 1) 2f x x x= − − − = − − − −

x

y

1

1

x

y

1

1

VIII. Alkalmazások:

Hatványozás:

• Prímtényezõs felbontásban pozitív egész kitevõjû hatványok, legnagyobb közös osztó, legki-
sebb közös többszörös, osztók száma

• Normálalakban: egyszerûbb a kicsi és a nagy számokkal való mûveletek elvégzése
• A számrendszerek felépítése a hatványozáson alapul
• Mértani sorozat: an, Sn kiszámolása
• Ismétléses variációk száma: nk

• Hasonló testek felszínének aránya l2, térfogatának aránya l3

• Kamatos kamat számítása

• Négyzetes úttörvény: 2
2
as t= ⋅

• Radioaktív bomlás
• Mértékegységváltás
• Binomiális eloszlás
• Nevezetes azonosságok

Gyökvonás:

• Magasabb fokú egyenletek megoldása
• Pitagorasz-tétel (négyzetre emelés, gyökvonás)
• Mértani közép (gyökvonás)
• Magasság-, illetve befogótétel (négyzetre emelés, gyökvonás)
• Kocka élének vagy gömb sugarának kiszámolása a térfogatból

• l hosszúságú fonálinga lengésideje: 2 lT
g

π=

• h magasságból szabadon esõ test sebessége: 2v gh=
• Kamatos kamatnál a kamattényezõ kiszámítása
• Harmonikus rezgõmozgás körfrekvenciájának kiszámítása

Matematikatörténeti vonatkozások:

• Már idõszámításunk kezdetén ismerték kínai matematikusok a négyzetgyök és köbgyök fo-
galmát, a mai jelölésrendszere a XVI. században alakult ki.

• A XIII. századi kínai matematikusok az egyenletet meg tudták oldani, azaz tetszõleges pozi-
tív számból tudtak gyököt vonni.

• Oresmicus (1323–1382) francia matematikus foglalkozott elõször a törtkitevõs hatványokkal.
• Stifel (1487–1567) német matematikus írta le a nulladik és a negatív egész kitevõjû hatvá-

nyokat.
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6. A logaritmus fogalma és azonosságai. Az exponenciális
és a logaritmusfüggvény. Az inverz függvény

Vázlat:
I. A logaritmus definíciója

II. A logaritmus azonosságai
III. Exponenciális függvény, tulajdonságai
IV. Logaritmusfüggvény, tulajdonságai
V. Inverz függvény

VI. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:
I. A logaritmus definíciója

Az ax = b (a > 0, b > 0, a π 1) egyenlet megoldásakor az x kitevõt keressük. Ennek az egyenletnek
az egyetlen megoldása x = logab.

DEFINÍCIÓ: A logaritmus a hatványozás egyik fordított mûvelete: logab  (a alapú logaritmus b) az

az egyetlen valós kitevõ, melyre a-t emelve b-t kapunk: loga ba b= , (a > 0, b > 0, a π 1), vagyis
logab = c egyenértékû azzal, hogy ac = b. (A kitevõt fejezzük ki a hatványalap és a hatvány-
érték ismeretében.)
Elnevezések: a = a logaritmus alapja, b = hatványérték.
A logaritmus alapját azért választjuk pozitív számnak, mert
• negatív alap esetén a törtkitevõs hatvány nem értelmezhetõ.
• ha az alap 0 lenne, akkor a hatványérték bármilyen (0-tól különbözõ) kitevõre 0, így a ki-

tevõkeresés nem egyértelmû.
• ha az alap 1 lenne, a hatványérték a kitevõ bármely értékére 1, így sem egyértelmû a kite-

võkeresés.
Ha a logaritmus alapja 10, akkor a jelölés: log10x = lgx. Ha a logaritmus alapja e, akkor ter-
mészetes alapú logaritmusról beszélünk, így a jelölés: logex = lnx.

II. A logaritmus azonosságai

TÉTEL: Szorzat logaritmusa egyenlõ a tényezõk logaritmusának összegével:

loga(x ◊ y) = logax + logay,  ahol x, y > 0, a > 0, a π 1.

BIZONYÍTÁS: A logaritmus definíciója alapján:
loga xx a=  és loga yy a= , illetve log ( )a x yx y a ⋅⋅ =

Nézzük az állítás bal oldalát:
log log log loglog ( ) log ( ) log log loga a a ax y x y

a a a a ax y a a a x y+⋅ = ⋅ = = + ,

az azonos alapú hatványok szorzása és a logaritmus definíciója miatt.
Így a bizonyítandó állítás igaz.

TÉTEL: Tört logaritmusa megegyezik a számláló és a nevezõ logaritmusának különbségével:

log log loga a a
x x y
y

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

, ahol x, y > 0, a > 0, a π 1.
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BIZONYÍTÁS: A logaritmus definíciója alapján:

loga xx a=   és  loga yy a= ,  illetve  
loga

x
yx a

y

⎛ ⎞
⎜ ⎟
⎝ ⎠= .

Nézzük az állítás bal oldalát:
log

log log
log

log log log log log
a

a a

a

x
x y

a a a a ay
x a a x y
y a

−⎛ ⎞ = = = −⎜ ⎟
⎝ ⎠

,

az azonos alapú hatványok osztása és a logaritmus definíciója miatt.
Így a bizonyítandó állítás igaz.

TÉTEL: Hatvány logaritmusa az alap logaritmusának és a kitevõnek a szorzata:

logaxk = k ◊ logax, ahol x > 0, a > 0, a π 1, k ŒR.

BIZONYÍTÁS: A logaritmus definíciója alapján:
loga xx a= ,  illetve  log k

a xkx a= .
Nézzük az állítás bal oldalát:

( )log loglog log log loga a
kx k xk

a a a ax a a k x⋅= = = ⋅ ,

a hatvány hatványozása és a logaritmus definíciója miatt.
Így a bizonyítandó állítás igaz.

TÉTEL: Áttérés más alapú logaritmusra:

log
log

log
c

a
c

b
b

a
= , ahol a, b, c > 0, a, c π 1.

BIZONYÍTÁS: A logaritmus definíciója alapján: loga bb a= .
Írjuk fel: = = ⋅loglog log log loga b

c c a cb a b a ,
a logaritmus definíciója és a hatvány logaritmusa miatt.
Kaptuk: logcb = logab ◊ logca     /: logca π 0 a feltételek miatt.

Így: 
log

log
log

c
a

c

b
b

a
= . Ez a bizonyítandó állítás.

III. Exponenciális függvény

DEFINÍCIÓ: Az f: R Æ R, f(x) = ax (a > 0) függvényt exponenciális függvénynek nevezzük.
Az a = 1 esetén az exponenciális függvény konstans: f(x) = 1x = 1.

Jellemzés:

A függvény f: R Æ R, f(x) = ax,
0 < a < 1 esetben

g: R Æ R, g(x) = ax,
1 < a esetben

ábrázolása:

x

y

1

1

0< <1a

y = a x

x

y

1

1

a>1
y = a x
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értelmezési tartománya: valós számok halmaza: R valós számok halmaza: R
értékkészlete: pozitív valós számok halmaza:

R+
pozitív valós számok halmaza:

R+

monotonitása: szigorúan monoton csökken szigorúan monoton nõ

szélsõértéke: nincs nincs

görbülete: alulról konvex alulról konvex

zérushelye: nincs nincs

paritása: nincs: nem páros, nem páratlan nincs: nem páros, nem páratlan

korlátosság: alulról korlátos,
felülrõl nem korlátos

alulról korlátos,
felülrõl nem korlátos

invertálhatóság: invertálható: inverze az
f-1: R+ Æ R, f-1(x) = logax

(0 < a < 1) függvény

invertálható: inverze az
g-1: R+ Æ R, g-1(x) = logax

(1 < a) függvény

Az exponenciális függvény folytonos, differenciálható, integrálható.

IV. Logaritmusfüggvény

DEFINÍCIÓ: Az f: R+ Æ R, f(x) = logax, (a > 0, a π 1) függvényt logaritmusfüggvénynek nevezzük.

Jellemzés:

A függvény f: R+ Æ R, f(x) = logax,
0 < a < 1 esetben

g: R+ Æ R, g(x) = logax,
1 < a esetben

ábrázolása:

x

y

1

1

0< <1a

y x=loga

x

y

1

1

a>1
y x=loga

értelmezési tartománya: pozitív valós számok halmaza:
R+

pozitív valós számok halmaza:
R+

értékkészlete: valós számok halmaza: R valós számok halmaza: R
monotonitása: szigorúan monoton csökken szigorúan monoton nõ

szélsõértéke: nincs nincs

görbülete: alulról konvex alulról konkáv

zérushelye: x = 1 x = 1

paritása: nincs: nem páros, nem páratlan nincs: nem páros, nem páratlan

korlátosság: nem korlátos nem korlátos

invertálhatóság: invertálható: inverze az
f-1: R Æ R, f-1(x) = ax (0 < a < 1)

függvény

invertálható: inverze az
g-1: R Æ R, g-1(x) = ax (1 < a)

függvény

A logaritmusfüggvény folytonos, differenciálható, integrálható.
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Kapcsolat az exponenciális és a logaritmusfüggvények között:

0 < a < 1 1 < a

0< <1a

y x=loga

x

y

1

1

0< <1a

y = a x y x=

a>1
y x=loga

x

y

1

1

a>1
y = a x y x=

Az exponenciális függvény a π 1 esetén invertálható, inverze az f-1: R+ Æ R, f-1(x) = logax; a > 0,
a π 1 logaritmusfüggvény.
A logaritmusfüggvény invertálható, inverze az f-1: R Æ R, f-1(x) = ax; a > 0, a π 1 exponenciális
függvény.

V. Inverz függvény

DEFINÍCIÓ: Az f függvény inverze a g függvény, ha az f értelmezési tartományának minden x ele-
mére igaz, hogy f(x) eleme a g értelmezési tartományának és g(f(x)) = x. Az inverz függvény
jelölése: g = f-1.
Ha az f és a g függvények egymásnak inverzei, akkor az f értelmezési tartománya a g érték-
készlete, az f értékkészlete a g értelmezési tartománya.
Ha két függvény egymásnak inverzei, akkor grafikonjaik egymásnak tükörképei az y = x
egyenletû egyenesre.

A definícióból következik, hogy csak a kölcsönösen egyértelmû függvényeknek van inverze, azaz
egy függvény pontosan akkor invertálható, ha az értékkészlet minden eleme az értelmezési tarto-
mány pontosan egy eleméhez van hozzárendelve.

Például: f: R Æ R+, f(x) = 2x függvény és a g: R+ Æ R, g(x) = log2x függvény egymás inverzei,

ugyanis g(f(x)) = log22x = x, illetve f(g(x)) = 2log2x, valamint az egyik függvény értelmezési tarto-
mánya a másik függvény értékkészlete és viszont.
A nem kölcsönösen egyértelmû függvényeknek nincs inverze. Ezek a függvények gyakran az ér-
telmezési tartomány szûkítésével invertálhatóvá tehetõk.
Például:

1. A másodfokú függvény értelmezési tartományának szûkítésével invertálható, ha f: R+
0 Æ R+

0,

f(x) = x2, akkor inverze a g: R+
0 Æ R+

0, g(x) = x .

x

y

P’ b( ; )a

P b( ; )a

1

1
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2. A szinuszfüggvény inverze az értelmezési tartományának ;
2 2

⎡ ⎤−⎢ ⎥⎣ ⎦
p p  intervallumra való szû-

kítésén az arkuszszinuszfüggvény.

x

y

–1

–1

1

1

y x= arcsin

y x= sin

p
–

2

p
–

2

p
2

p
2

Inverz függvény elõállítása:
Egy kölcsönösen egyértelmû függvény inverze algebrai úton elõállítható a változók felcserélésével
a következõ módon:

1. Az f(x) = 2x - 3 függvény inverzének elõállítása: az y = 2x - 3 kifejezésben a változókat

felcseréljük: x = 2y - 3, majd ebbõl az egyenletbõl az y változót kifejezzük: 3,
2

xy +=  ebbõl

1 3( ) ,
2

xf x− +=  ahol mindkét függvény értelmezési tartománya és értékkészlete a valós szá-

mok halmaza.
2. Az ( ) 2 4f x x= − −  függvény (ahol x ≥ 2, y ≥ -4) inverzének elõállítása:

az 2 4y x= − −  kifejezésben a változókat felcseréljük: 2 4,x y= − −  majd ebbõl az

egyenletbõl az y változót kifejezzük: y = (x + 4)2 + 2, ebbõl f-1(x) = (x + 4)2 + 2, (ahol x ≥ -4,
y ≥ 2).

VI. Alkalmazások:

• A 2x = 3 egyenlet megoldása logaritmussal
• Matematikai mûveletek visszavezetése egyszerûbb mûveletek elvégzésére (szorzás helyett

összeadás, hatványozás helyett szorzás)
• Kamatos kamat számításakor az alaptõke, az n-edik év végi tõke, valamint kamattényezõ

ismeretében az n meghatározása:

0
0

0 0 0

lg lg
lg lg lg lg

lg
n n n nn n n

n
t t t t t

t t q q q n q n
t t t q

−= ⋅ ⇒ = ⇒ = ⇒ = ⋅ ⇒ =

• Számolás gépbe nem férõ nagy számokkal, pl.:

= ⇒ = ⋅ − ⋅ =

= = ⋅ = ⋅

200

120
132,21 132 0,21 132

85 lg 200 lg85 120 lg130 132,21
130
10 10 10 1,6218 10

x x

x
• Gravitációs erõtérben a barometrikus magasságformulában a levegõ sûrûsége a magassággal

exponenciálisan csökken.
• A Richter-skála (a földrengés erõsségének mûszeres megfigyelésen alapuló mérõszáma a mag-

nitúdó, amely a  földrengéskor a fészekben felszabaduló energia logaritmusával arányos).
• pH-érték: az oldatok szabad oxóniumion-koncentrációjának negatív 10-es alapú logaritmusa:

pH = -lg[H3O+]
• Exponenciális függvény írja le: a radioaktív izotópok bomlását, az oldódás folyamatát, a kon-

denzátor feltöltõdésének és kisülésének folyamatát.
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Matematikatörténeti vonatkozások:

• A logaritmust Napier (1550–1617) skót matematikus találta ki, a logaritmus szót a logosz
(viszony) és az aritmosz (szám) görög szavakból alkotta. Elsõsorban matematikai számítások
megkönnyítését segítõ módszereket talált ki, így a logaritmust, amely a csillagászati számítá-
sokban bizonyult hasznosnak. Kepler használta csillagászati táblázatai elkészítésekor.
Napier feltalálta a róla elnevezett számolópálcákat, melyek segítségével a szorzás és az osz-
tás gyorsabban volt elvégezhetõ. A trigonometrikus függvények logaritmusának táblázatát is

elkészítette, táblázatában a logaritmus alapja 1
e

 volt.

• Bürgi (1552–1632) svájci órásmester és matematikus csillagászati eszközökkel is foglalko-
zott Kepler munkatársaként. Segített Keplernek a csillagászati számításokban, ehhez megal-
kotta az elsõ logaritmustáblázatot.

• Az Oxfordi Egyetem tanára, Briggs (1561–1630) angol matematikus és Napier közösen ki-
dolgozták az elsõ 10-es alapú, 8 jegyû logaritmustáblázatot.

• Napier számolópálcáiból az 1600-as években kifejlesztették a logarlécet, amelyet az 1970-es
évekig használtak. A logarléc és a logaritmustáblázatok több száz évig nélkülözhetetlen esz-
közei voltak a bonyolultabb számításokkal foglalkozó embereknek. Szerepük csak az elekt-
romos számológépek és a számítógépek megjelenésével szûnt meg fokozatosan.
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7. Másodfokú egyenletek és egyenlõtlenségek.
Másodfokúra visszavezethetõ egyenletek.
Egyenletek ekvivalenciája, gyökvesztés, hamis gyök,
ellenõrzés

Vázlat:
I. Egyenlet, egyenlet gyökének fogalma

II. Másodfokú egyenletek, megoldásuk
III. Másodfokú egyenlõtlenségek megoldása
IV. Új ismeretlen bevezetésével másodfokúra visszavezetõ egyenletek
V. Egyenletek ekvivalenciája

VI. Gyökvesztés
VII. Hamis gyök

VIII. Ellenõrzés
IX. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Egyenlet

DEFINÍCIÓ: Az egyenlet bármely két egyenlõségjellel összekötött kifejezés. A kifejezésben sze-
replõ változók az ismeretlenek.
Az egyenlet olyan változótól függõ állítás (nyitott mondat), amelynek az alaphalmaza szám-
halmaz.

DEFINÍCIÓ: Az alaphalmaz az ismeretlenek azon értékeinek halmaza, ahol az egyenletet vizsgál-
juk, ahol a megoldásokat keressük.

DEFINÍCIÓ: Az egyenlet értelmezési tartománya az alaphalmaznak az a legbõvebb részhalmaza,
ahol az egyenletben szereplõ kifejezések értelmezhetõek.

DEFINÍCIÓ: Az egyenletet igazzá tevõ értékek az egyenlet megoldásai vagy gyökei.

DEFINÍCIÓ: Az alaphalmaz azon elemeinek halmaza, amelyekre az egyenlet igaz, vagyis az egyen-
let megoldásainak (vagy gyökeinek) halmaza az egyenlet megoldáshalmaza (vagy igazság-
halmaza).

DEFINÍCIÓ: Az azonosság olyan egyenlet, amelynek a megoldáshalmaza megegyezik az egyenlet
értelmezési tartományával.

II. Másodfokú egyismeretlenes egyenlet

DEFINÍCIÓ: Másodfokú egyismeretlenes egyenlet ax2 + bx + c = 0 alakra hozható, ahol a, b, c ŒR,
a π 0.
Megoldása lehetséges a megoldóképlettel, szorzattá alakítással, teljes négyzetté alakítással,
Viète-formulával.
Pl. x2 + 3x = 0  vagy  x2 + 6x + 9 = 0
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TÉTEL: Az ax2 + bx + c = 0 (a π 0) egyenlet megoldóképlete: 
2

1,2
4

2
b b acx

a
− ± −= , ahol

b2 - 4ac ≥ 0.

BIZONYÍTÁS:
42ax2 + 4abx + 4ac = 0    / ◊ 4a
4a2x2 + 4abx + 4ac = 0    / ◊ 4a

teljes négyzetté alakítással:

(2ax + b)2 - b2 + 4ac = 0   / + b2 - 4ac b2 - 4ac
- b2 + 4ac(2ax + b)2 = b2 - 4ac   / + b2 - 40ac

Mivel a bal oldalon négyzetszám van, amely nem lehet negatív, így b2 - 4ac sem lehet az.
(Ha b2 - 4ac < 0, akkor nincs megoldás). Ha b2 - 4ac ≥ 0, akkor vonjunk mindkét oldalból
gyököt, figyelve, hogy elkerüljük a gyökvesztést:

2

2

2

2

1,2

2 4

2 4

2 4

4
2

ax b b ac

ax b b ac

ax b b ac

b b acx
a

+ = −

+ = ± −

= − ± −

− ± −=

DEFINÍCIÓ: Az ax2 + bx + c = 0 (a π 0) másodfokú egyenlet diszkriminánsa D = b2 - 4ac.

• Ha D > 0, akkor az egyenletnek két különbözõ valós gyöke van: 
2

1,2
4

2
b b acx

a
− ± −= .

• Ha D = 0, akkor az egyenletnek két egymással egyenlõ gyöke, vagyis 1 valódi gyöke van:

2
bx
a

= − , ezt kétszeres gyöknek is nevezzük, mert x1 = x2.

• Ha D < 0, akkor az egyenletnek nincs valós gyöke.

TÉTEL: A másodfokú egyenlet gyöktényezõs alakja:
Ha egy ax2 + bx + c = 0 (a π 0) egyenlet megoldható (azaz D ≥ 0) és két gyöke van: x1 és x2,
akkor az ax2 + bx + c = a(x - x1)(x - x2) minden valós x-re igaz.

TÉTEL: Viète-formulák: másodfokú egyenlet gyökei és együtthatói közti összefüggések:
 Az ax2 + bx + c = 0 (a π 0) alakban felírt (D ≥ 0) másodfokú egyenlet gyökeire:

1 2
bx x
a

+ = −  és 1 2
cx x
a

⋅ = .

BIZONYÍTÁS:

( )

2 2

1 2

2
2 2 2 22 2

1 2 2 2 2

4 4 2 .
2 2 2 2

( ) 4 ( 4 )4 4 4 .
2 2 (2 ) 4 4

b b ac b b ac b b b bx x
a a a a a

b b ac b b acb b ac b b ac ac cx x
a a aa a a

− + − − − − − − −+ = + = = = −

− − − − −− + − − − −⋅ = ⋅ = = = =

Grafikus megoldás: az x ® ax2 + bx + c (a π 0) függvény zérushelyei adják a megoldást. (Sõt
a > 0 esetre törekszem!)

( ) ( ) ( )2 22 2
2 2

2
4

2 2 44
b b b b ac bx ax bx c a x x c a x c a x
a a a aa

⎡ ⎤ −+ + = + + = + − + = + +⎢ ⎥⎣ ⎦
6 .

Olyan parabola a kép, amelynek tengelypontja 
24,

2 4
b ac bT
a a

⎛ ⎞−−⎜ ⎟
⎝ ⎠

.
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III. Másodfokú egyenlõtlenségek megoldása

DEFINÍCIÓ: Egyenlõtlenségrõl beszélünk, ha algebrai kifejezéseket a <, >, £, ≥ jelek valamelyikével
kapcsolunk össze. Ha ezek a kifejezések másodfokúak, akkor másodfokú egyenlõtlenségrõl
beszélünk. A másodfokú egyenlet megoldásához hasonlóan 0-ra rendezünk úgy, hogy a fõ-
együttható pozitív legyen, tehát a > 0. Ekkor ax2 + bx + c ≥ 0, ax2 + bx + c > 0, ax2 + bx + c £ 0,
ax2 + bx + c < 0 alakúra rendezhetõ minden másodfokú egyenlõtlenség.

Az egyenlõtlenségek megoldási módszerei hasonlóak az egyenletek megoldási módszereihez:

1. A mérlegelv, alkalmazása nehézkes másodfokú egyenlõtlenségek esetében.
2. Grafikus megoldás: A másodfokú egyenlõtlenségek megoldásakor fontos szerepet játszik,

hogy az egyenlõtlenségekben szereplõ másodfokú kifejezések grafikonja a koordináta-rend-
szerben az y tengellyel párhuzamos tengelyû parabola. Az egyenlõtlenségben szereplõ má-
sodfokú kifejezés zérushelyének megállapítása után vázlatosan ábrázoljuk a kifejezést leíró
másodfokú függvényt. Majd a zérushelyek számának függvényében meghatározzuk a meg-
oldáshalmazt. (lásd 20. tétel)

IV. Új ismeretlen bevezetésével másodfokúra visszavezethetõ egyenletek
Magasabb fokú, illetve bizonyos exponenciális, logaritmikus, abszolút értékes, gyökös, trigonomet-
rikus egyenletek új ismeretlen bevezetésével másodfokú egyenletre vezethetõk vissza.

⎫− − =
⎪

− ⋅ − = ⎪
⎪− − = ⎪
⎬

− − − − = ⎪
⎪+ − + − = ⎪
⎪− − = ⎭

6 3

2

2

2

2

3 4 0

2 3 2 4 0

lg 3lg 4 0

( 2) 3 2 4 0

1 3 1 4 0

sin 3sin 4 0

x x

x x

x x

x x

x x

x x

Ezek az egyenletek mind az a2 - 3a - 4 = 0 másodfokú egyenletre vezethetõk vissza új ismeretlen

bevezetésével: ahol az új ismeretlen rendre a = x3, a = 2x, a = lgx, a =Ωx - 2Ω, 1,a x= +  a = sinx.
Az a-ra nézve másodfokú egyenlet megoldásai: a1 = 4, a2 = -1. Visszahelyettesítve az eredeti is-
meretlent, rendre a következõket kapjuk:

x3 = 4  fi  3 4,x =   illetve  x3 = -1  fi  x = -1;

2x = 4  fi  x = 2,  illetve  2x = -1  fi  nincs megoldás;
lgx = 4  fi  x = 10000,  illetve  lgx = -1  fi  x = 0,1;
Ωx - 2Ω= 4  fi  x - 2 = ±4  fi  x1 = 6, x2 = -2,  illetve  Ωx - 2Ω= -1  fi  nincs megoldás;

1 4x + =   fi  x = 15  és 1 1x + = −   fi  nincs megoldás;

sinx = 4  fi  nincs megoldás,  illetve  sinx = -1  fi  3 2 ,
2

x k= + ⋅p p  ahol k ŒZ.

V. Egyenletek ekvivalenciája (egyenértékûsége)

DEFINÍCIÓ: Két egyenlet ekvivalens, ha alaphalmazuk és megoldáshalmazuk is azonos.

DEFINÍCIÓ: Ekvivalens átalakítás az olyan átalakítás, amit egyenletek megoldása közben vég-
zünk és ezzel az átalakítással az eredetivel ekvivalens egyenletet kapunk.
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Ekvivalens átalakítás például az egyenlet mérlegelvvel történõ megoldása. Nem ekvivalens átala-
kítás például változót tartalmazó kifejezéssel osztani az egyenlet mindkét oldalát, vagy négyzetre
emelni az egyenlet mindkét oldalát.
Az egyenletek megoldása során nem mindig van lehetõségünk ekvivalens átalakításokat végezni.
Ha lehet, ilyen esetekben vagy az értelmezési tartomány, vagy az értékkészlet vizsgálatával próbá-
lunk feltételeket felállítani.
De még így is elõfordulhat, hogy olyan átalakítást végzünk, amely során

• az új egyenletnek szûkebb az értelmezési tartománya, mint az eredetinek, ekkor gyökvesztés
állhat fenn;

• az új egyenletnek bõvebb az értelmezési tartománya, mint az eredetinek, ekkor gyöknyerés
állhat fenn.

VI. Gyökvesztés
Gyökvesztés következhet be, ha a változót tartalmazó kifejezéssel osztjuk az egyenlet mindkét
oldalát, vagy olyan átalakítást végzünk, amely szûkíti az értelmezési tartományt.

Pl.  hibás megoldás: helyes megoldás:
3 2

:

2

2 0

2 1 0

1

x

x x x

x x

x

+ + =

⇓ ←⎯⎯
+ + =

= −

3 2

2

2

2 0

( 2 1) 0

0

vagy

2 1 0 1

x x x

x x x

x

x x x

+ + =
+ + =

=

+ + = ⇔ = −

Pl.  hibás megoldás: helyes megoldás:
2lg( 2) 2lg5 { 2}

2lg( 2) 2lg5 ] 2, [
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fx D R
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x

x x
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VII. Hamis gyök
Hamis gyököt kaphatunk, ha az egyenlet mindkét oldalát négyzetre emeljük, vagy mindkét oldalt
az ismeretlent tartalmazó kifejezéssel szorozzuk, vagy olyan átalakítást végzünk, ami bõvíti az
értelmezési tartományt.

1. példa: 27 1 /( )x x− = − .

Eredeti feltétel: 7 - x ≥ 0  fi  x £ 7  fi  Df = ]-•, 7].
A gyöknyerés kiküszöbölhetõ közbülsõ feltétellel: 1 - x ≥ 0  fi  x £ 1  fi  Dfúj

 = ]-•, 1].

7 - x = (1 - x)2  fi  x2 - x - 6 = 0  fi  x1 = 3 œDfúj
,  x2 = -2 ŒDfúj

2. példa: 1 12 2
1 1

x
x x

+ = +
− −

   / 1
1x

−
−

  fi  2x = 2  fi  x = 1.

A gyöknyerés ekkor is kiküszöbölhetõ, ha az eredeti egyenletre írunk Df-et.

3. példa: + − + = +6 2 2 8x x x .
Eredeti feltételek: x + 6 ≥ 0 fi x ≥ -6; x + 2 ≥ 0 fi x ≥ -2; 2x + 8 ≥ 0 fi x ≥ -4; fi Df = [-2; •[.
Ha az egyenletet elõször rendezzük úgy, hogy mindkét oldal nemnegatív legyen, négyzetre emeljük
mindkét oldalt, rendezzük úgy, hogy a gyökös kifejezés az egyik oldalra kerüljön, a többi tag a má-
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sik oldalra, majd a négyzetre emelés elõtt közbülsõ feltételt írunk, hogy a gyöknyerést kiküszöböljük:
+ = + + + →6 2 2 8 / négyzetre emelésx x x

+ = + + ⋅ + ⋅ + + + →6 2 2 2 2 8 2 8 /rendezésx x x x x

− − = ⋅ + ⋅ + →2 4 2 2 2 8x x x  közbülsõ feltétel írása: a jobb oldal nemnegatív, a bal oldalnak
is annak kell lennie, mivel egyenlõk, azaz -2x - 4 ≥ 0 fi x £ -2 fi Dfúj

 = {-2}. Ebben az eset-
ben nem is kell elvégezni a négyzetre emelést, hiszen csak egy szám felel meg az értelmezés-
nek, ha van megoldás, akkor csak ez az egy szám lehet. Ennek ellenõrzésével eldönthetõ, hogy
ez valóban megoldás-e.

Akár a gyökvesztés, akár a hamis gyök elkerülhetõ, ha az egyenlet megoldása során mindig figye-
lünk az értelmezési tartomány változására, ha lehet, az értékkészletet is vizsgáljuk, mert így szûkí-
teni lehet az alaphalmazt.

VIII. Ellenõrzés
Egyenletek megoldásánál két szempontból is fontos szerepe van az ellenõrzésnek: ki tudjuk szûrni
a megoldás során esetleg elkövetett hibáinkat, illetve ki tudjuk zárni a hamis gyököket. Ez utóbbiak
elkerülhetõk, ha a megoldás során nem bõvítjük az értelmezési tartományt.
A kapott megoldásokat behelyettesítéssel ellenõrizni kell, így el lehet dönteni, hogy az eredeti
egyenletnek is megoldásai-e, vagy csak az átalakítottnak.

IX. Alkalmazások:
• Egyenes, kör, parabola adott abszcisszájú vagy ordinátájú pontjának meghatározása
• Magasabb fokú egyenletek megoldása
• Pitagorasz-tétel
• Koszinusztételbõl oldal kiszámítása
• Mély szakadék mélységének meghatározása: egy ledobott kõ dobásától a szakadék alján tör-

ténõ koppanás hangjának meghallásáig eltelt idõ mérésével

Matematikatörténeti vonatkozások:

• Az ókori Mezopotámiából, a Kr. e. 2000-bõl származó ékírásos táblákon található jelek alap-
ján tudjuk, hogy az akkori írástudók már meg tudtak oldani elsõ- és másodfokú egyenleteket
és egyenletrendszereket.

• A legrégebbi írásos emléken, a Rhind-papiruszon (~Kr. e. 1750) láthatjuk a nyomait a gya-
korlatból eredõ algebrai ismereteknek: 85, a hétköznapi élettel összefüggõ számolási és geo-
metriai feladatot tartalmaz. Ezek között megtalálhatóak az egyszerû elsõfokú egyismeretlenes
egyenletek megoldási módszerei.

• Idõszámításuk kezdete körül keletkezett Kínában a Matematika kilenc fejezetben címû mû.
Ennek utolsó fejezetében már megtalálható a másodfokú egyenlet megoldásának szabálya,
amely azonos a ma használt megoldóképlettel.

• Euklidesz, a Kr. e. 300 körül élt görög matematikus Elemek címû mûvében geometrikus tár-
gyalásban vizsgálta a másodfokú egyenlet megoldásait, szakaszok arányával szerkesztette
meg az ismeretlen szakaszt.

• Viète (1540–1603) francia matematikus használt elõször betûket az együtthatók jelölésére,
õ írta fel elõször a gyökök és együtthatók közti összefüggéseket.

• Cardano (1501–1576) olasz matematikus megalkotta a harmadfokú egyenlet megoldókép-
letét, a negyedfokú egyenlet megoldását visszavezette harmadfokú egyenlet megoldására.

• Abel (1802–1829) norvég matematikus bebizonyította, hogy az általános ötödfokú vagy
magasabb fokú egyenletekre nem létezik univerzális megoldóképlet (róla nevezték el a ma-
tematikai Nobel-díjnak megfelelõ Abel-díjat).

• Galois (1811–1832) francia matematikus megmutatta, melyek azok az egyenlettípusok, ame-
lyek a négy alapmûvelettel és gyökvonással megoldhatók.
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8. A leíró statisztika jellemzõi, diagramok.
Nevezetes középértékek

Vázlat:
I. Adatsokaságok jellemzõi (diagram, táblázat, osztályokba sorolás)

II. A leíró statisztika jellemzõi: mintavétel, gyakoriság, relatív gyakoriság, táblázat, osztályba
sorolás

III. Statisztikai mutatók: középértékek (módusz, átlag, medián, kvartilisek), terjedelem, szórás,
átlagtól való abszolút eltérés

IV. Diagramok: kör-, oszlop-, vonal-, sodrófa (boxplot) diagram, gyakorisági diagram
V. Nevezetes középértékek (számtani, mértani, harmonikus, négyzetes)

Közepek közti összefüggések
VI. Nevezetes középértékek alkalmazása szélsõérték-feladatokban

• összeg állandósága esetén szorzat maximalizálása
• szorzat állandósága esetén összeg minimalizálása

VII. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Adatsokaságok jellemzõi

DEFINÍCIÓ: A statisztika feladatai közé tartozik, hogy bizonyos egyedek meghatározott tulajdon-
ságairól tájékozódjék, majd a szerzett (általában számszerû) adatokat feldolgozza, elemzi. Az
elemzéshez összegyûjtött adatok halmazát adatsokaságnak, mintának, a meghatározott tulaj-
donságot ismérvnek, változónak nevezzük. A sokaság elemeinek az ismérv szerinti tulajdon-
ságát statisztikai adatnak, az adatsokaság elemeinek számát a sokaság méretének nevezzük.

II. A leíró statisztika jellemzõi
A leíró statisztika a tömegesen elõforduló jelenségekkel, a jelenségekbõl nyert adatok vizsgálatá-
val, elemzésével (leírásával) foglalkozik.
A statisztika egyik fontos feladata az adatok összegyûjtése. Ha a vizsgálandó egyedek száma na-
gyon nagy, akkor nem minden egyedet vizsgálunk meg a tulajdonság alapján, hanem az adatsoka-
ságnak vesszük egy részhalmazát, vagyis az egyedek közül mintát veszünk. A megfelelõen kivá-
lasztott minta elemzésébõl következtethetünk a sokaság adataira.
A reprezentatív mintavételnél törekedni kell arra, hogy a vizsgált tulajdonság elõfordulása a min-
tában közelítse a sokaságban való elõfordulását. Pl. közvélemény-kutatás.
Véletlenszerû mintavétel esetén a sokaság elemei egyenlõ valószínûséggel kerülnek a mintába. Pl.
urnából húzás.

DEFINÍCIÓ: Az egyes adatok elõfordulásának a száma a gyakoriság. Az adatok összehasonlítható-
sága miatt sokszor a gyakoriságnak a teljes adatsokasághoz viszonyított arányával, a relatív
gyakorisággal dolgozunk, azaz a gyakoriságot osztjuk az adatok számával.

Az adatokat megadhatjuk táblázatos formában, így az adatok áttekinthetõen láthatók. Táblázat
használatának elõnye, hogy nagyobb adathalmazokat tömören, helytakarékosan ábrázolhatunk.
Leggyakrabban a gyakorisági táblázatot használjuk, ez a lehetséges adatokat és a hozzájuk tartozó
gyakoriságokat tartalmazza.
Osztályokba soroljuk az adatokat, ha nagy méretû (sok adatból álló) adatsokasággal dolgozunk,
vagy ha sok különbözõ érték van közel azonos gyakorisággal a sokaságban, akkor az egymáshoz
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közeli értékek összevonásával az adatokat osztályokba rendezzük. Az osztályba soroláskor fontos
szempont, hogy az osztályoknak diszjunktaknak (különállóknak), de hézagmentesnek kell lenniük.
Egy osztályköz hossza az osztály felsõ és alsó határának különbsége. Gyakran azonos hosszúságú
osztályokkal dolgozunk. Az osztályközép az osztály alsó és felsõ határának számtani közepe. Ek-
kor minden, az osztályba tartozó adatot úgy tekintünk, mintha értéke az osztályközép lenne. Az
egyes osztályokba tartozó adatok száma a kumulált gyakoriság. Ha osztályközepekkel számolunk
statisztikai mutatókat, akkor gyakoriságként mindig a kumulált gyakoriságot használjuk.

III. Statisztikai mutatók

A középértékek

Az adatsokaság egészét csak leegyszerûsítéseket alkalmazva tudjuk jellemezni. Ezt a célt szolgálják
a középértékek, amelyek egyetlen számmal írnak le egy adathalmazt.
Ezek elõnye, hogy megfelelõen alkalmazva jól jelenítik meg az egész adatsokaság valamilyen tu-
lajdonságát, ugyanakkor hátrányuk, hogy nem nyújtanak képet az egyes adatokról.

DEFINÍCIÓ: Egy adatsokaságban a leggyakrabban elõforduló adat a minta módusza.
Ha a legnagyobb gyakoriság csak egyszer fordul elõ az adatsokaságban, akkor az egymó-
duszú, ha többször is elõfordul, akkor többmóduszú, tehát a módusz több elem is lehet, ha
ugyanakkora a gyakoriságuk.
A módusz elõnye:
– könnyen meghatározható.
A módusz hátránya:
– semmitmondó, ha az adatok közel azonos gyakorisággal fordulnak elõ;
– csak akkor ad használható jellemzést a mintáról, ha a többi adat gyakoriságához képest

sokszor fordul elõ egy adat, de ekkor sem mond semmit a többirõl.

DEFINÍCIÓ: Az adatok összegének és az adatok számának hányadosa a minta átlaga (számtani
közepe).
Súlyozott számtani középrõl beszélünk, ha az egyes adatok többször is elõfordulnak, vagy
különbözõ súlyokkal szerepelnek. Ekkor a súlyozott számtani közép kiszámítása: az adatokat
szorozzuk a gyakoriságukkal, illetve a súlyukkal, majd ezek összegét vesszük, az összeget
pedig elosztjuk a gyakoriságok, illetve a súlyok összegével.
Az átlag elõnye:
– a nála nagyobb adatoktól vett eltéréseinek összege egyenlõ a nála kisebb adatoktól vett

eltéréseinek összegével.
Az átlag hátránya:
– egyetlen, a többitõl jelentõsen eltérõ adat eltorzíthatja, így ekkor már nem jól jellemzi a min-

tát.

DEFINÍCIÓ: Az adatok mediánja a nagyság szerinti sorrendjükben a középsõ adat. Páratlan (2n + 1
darab) adat esetében a medián a középsõ (az n + 1-edik) adat, páros (2n darab) adat esetén
a két középsõ (az n-edik és az n + 1-edik) adat átlaga.
A definícióból adódik, hogy az összes elõforduló ismérvérték (adat) fele kisebb vagy egyen-
lõ, fele nagyobb vagy egyenlõ, mint a medián.
A medián elõnye:
– az adatoktól mért távolságainak összege minimális;
– valóban középérték, hiszen ugyanannyi adat nagyobb nála, mint ahány kisebb.

DEFINÍCIÓ: Kvartilisek azok a helyzetmutatók, amelyek a nagyság szerint növekvõ sorrendbe
rendezett adatokat négy, lehetõleg egyenlõ mennyiségû részre osztják.
Alsó kvartilis (Q1) az a szám, amelynél az adatok kb. negyede kisebb. Meghatározása:
a mediánnal kettéosztott adatok alsó részének a mediánja.
Felsõ kvartilis: (Q3) az a szám, amelynél az adatok kb. negyede nagyobb. Meghatározása:
a mediánnal kettéosztott adatok felsõ részének a mediánja.
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A szóródás jellemzõi

DEFINÍCIÓ: Az adatok legnagyobb és legkisebb elemének a különbségét a minta terjedelmének
nevezzük.
Minél kisebb a minta terjedelme, annál jobban jellemzi a mintát.
A terjedelem elõnye:
– szemléletes, egyszerûen számolható.
A terjedelem hátránya:
– egy-két szélsõséges adat elronthatja.

DEFINÍCIÓ: A félterjedelem (interkvartilis terjedelem) a felsõ és alsó kvartilis különbsége. Az
adatok felének elhelyezkedését mutatja meg.

Sokszor tapasztalunk kiugró adatokat az adatsokaságban, ezek jelentõsen eltérnek a többi adattól.
A jelentõs eltérés szubjektív, nincs rá meghatározás, általában kiugró adatnak tekintjük a felsõ
kvartilistõl a félterjedelem 1,5-szeresével „felfelé”, vagy az alsó kvartilistõl a félterjedelem 1,5-sze-
resével „lefelé” eltérõ adatot. A kiugró adatok torzítják a mintát jellemzõ mutatókat, ezért sokszor
kihagyjuk õket a minimum és maximum számolásakor.

A mintát jellemzõ számötös: minimum, alsó kvartilis, medián, felsõ kvartilis, maximum.

DEFINÍCIÓ: Az adatok átlagtól való eltérések négyzetének átlaga a minta szórásnégyzete, ennek

négyzetgyöke a minta szórása: 
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A szórás megmutatja, hogy a minta adatai mennyire térnek el az átlagtól. Minél kisebb a szó-
rás, annál jobban jellemzi az átlag az adatsokaságot.

DEFINÍCIÓ: Az átlagtól való abszolút eltérés:
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Elõnye: az abszolút érték miatt nem egyenlítõdnek ki a pozitív és negatív eltérések.

IV. Diagramok
Az adatok grafikus megjelenítése diagramon történik, amelynek típusát a feladat határozza meg.

Oszlopdiagram: az adatok egymáshoz való viszonyát ábrázolja. Nem célszerû használni, ha az
adatok közt van 1-2 kiugró érték (túl nagy: nem fér rá a diagramra, túl kicsi: eltörpül a többi oszlop
közt), vagy ha az adatok közötti eltérés nagyon kicsi (közel azonosnak látszanak az értékek). A víz-
szintes tengelyen az adatfajtáknak megfelelõ intervallumokat jelöljük, ezek fölé olyan téglalapokat
rajzolunk, amelyeknek területe arányos az adatfajta gyakoriságával.

Hisztogram (gyakorisági diagram): az adatok gyakorisági eloszlását oszlopdiagramon ábrázolja
úgy, hogy az oszlopok hézagmentesen helyezkednek el.

Sávdiagram: fordított oszlopdiagram, amelyben a két tengely helyet cserél, az oszlopok vízszinte-
sek, azaz sávok.

Kördiagram: a részadatoknak az egészhez való viszonyát ábrázolja. Alkalmas %-os formában
megadott adatok ábrázolására. A teljes szög (360º) 100%-nak felel meg, a megfelelõ százalékérték
egyenesen arányos a körcikk középponti szögével. Nem célszerû használni, ha nagyon sok az adat
(túl kicsik a középponti szögek, nem összehasonlíthatók)
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Vonaldiagram: koordináta-rendszerben pontként ábrázolja az összetartozó számpárokat, és ezeket
töröttvonallal köti össze. Különbözõ adatok (pl. idõbeli) változását ábrázolja. A gyakoriságok vo-
naldiagramját gyakorisági poligonnak nevezzük.

Sodrófa diagram (dobozdiagram, boxplot): a mintát jellemzõ számötös (minimum, alsó kvartilis,
medián, felsõ kvartilis, maximum) segítségével ábrázolunk. Képe a minimum és az alsó kvartilis
között egy szakasz, az alsó kvartilis és a felsõ kvartilis között egy téglalap (doboz), benne behúzva
a medián, a felsõ kvartilis és a maximum között szintén egy szakasz. Ha egy-két nagyon kiugró
adat van az adatsokaságban, akkor azokat kiugró adatként ábrázoljuk és nélkülük határozzuk meg a
minimumot, illetve a maximumot. A sodrófa diagram lehet álló, illetve fekvõ helyzetû is.

minimum alsó
kvartilis

medián

félterjedelem

felsõ
kvartilis

maximum kiugró adat

�����������

V. Pozitív számok nevezetes középértékei

DEFINÍCIÓ: Az a1, a2, a3, ..., an pozitív számok

számtani (aritmetikai) közepe:

1 2 3 na a a a
A

n
+ + + += …

;

mértani (geometriai) közepe:

1 2 3
n

nG a a a a= ⋅ ⋅ ⋅ ⋅… ;

négyzetes (kvadratikus) közepe:
2 2 2 2
1 2 3 na a a a

Q
n

+ + + +
=

…
;

harmonikus közepe:

1 2 3

1 1 1 1
n

nH

a a a a

=
+ + + +…

, ha a1, a2, a3, ..., an > 0.

TÉTEL: A középértékek közti összefüggés: H £ G £ A £ Q.
Egyenlõség akkor és csak akkor, ha a1 = a2 = a3 = ... = an.

TÉTEL: Két pozitív valós szám esetén 
2

a ba b +⋅ ≤ .

BIZONYÍTÁS I.: Mivel az egyenlõtlenség mindkét oldala pozitív, ezért a négyzetre emelés az ere-
detivel ekvivalens állítást fogalmaz meg. Tehát

+ +≤ ⋅

≤ + + −
≤ − +
≤ −

2 2

2 2

2 2

2

2 / 4
4

4 2 / 4

0 2 / nevezetes szorzattá alakítjuk

0 ( )

a ab bab

ab a ab b ab

a ab b

a b

Az utolsó egyenlõtlenség igaz, így az eredeti is az.
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Az eredmény alapján megállapítható, hogy a két közép akkor és csak akkor lesz egymással

egyenlõ, ha a = b. Ekkor 
2

a ba ab b+= = = .

BIZONYÍTÁS II.: Legyen 0 < a £ b.
Vegyünk fel egy a + b oldalú négyzetet, és az oldalait osszuk fel az ábrán látható módon.

a b

a

a

a

b

b

b

t

t

t

t

b– a

A nagy négyzet területe egyenlõ a keletkezõ részek területének összegével:

(a + b)2 = 4t + (b - a)2

A kis téglalap területe: t = ab.
Mivel (b - a)2 ≥ 0, ezért ezt a tagot elhagyva az (a + b)2 ≥ 4t egyenlõtlenséghez jutunk.
Behelyettesítve t helyére: (a + b)2 ≥ 4ab.
Mivel a feltétel miatt mindkét oldal pozitív, ezért gyököt vonhatunk: 2a b ab+ ≥ .

Amibõl 
2

a b ab+ ≥ .

BIZONYÍTÁS III.: Legyen a, b > 0,  2r = a + b.
Vegyünk fel egy r sugarú kört, benne egy AB átmérõt, a körvonalon egy A, B-tõl különbözõ
C pontot.

aA B

C

m

O

b

A Thalész-tétel miatt ACB¬ = 90º.
ABC háromszögre alkalmazva a magasságtételt: m ab= .

De a körben m £ r, azaz 
2

a ba b +⋅ ≤ .

VI. Nevezetes középértékek alkalmazása szélsõérték-feladatokban

1. Összeg állandósága esetén a szorzatot tudjuk maximalizálni.
Pl.: Azon téglatestek közül, amelyek éleinek összege 60 cm, melyiknek a térfogata maximális?
Legyenek a téglatest élei: a, b és c.
Ekkor a téglatest térfogata V = abc, az élek összege: 4(a + b + c) = 60.
Ebbõl a + b + c = 15.
A számtani és mértani közép közti egyenlõtlenséget kihasználva:

( ) ( )3 3
3 315 5 125

3 3 3
a b c a b cabc abc abc abc V+ + + +≥ ⇒ ≥ ⇒ ≥ ⇒ ≥ ⇒ ≥ .

Mivel egyenlõség csak a = b = c esetén teljesül, így a térfogat az 5 cm élû kocka esetén maximális.
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2. Szorzat állandósága esetén az összeget tudjuk minimalizálni.

Pl.: Azon téglalapok közül, amelyeknek a területe 100 cm2, melyiknek a kerülete a minimális?
Legyenek a téglalap oldalai a és b.

Ekkor a téglalap területe t = ab = 100, kerülete k = 2(a + b), amibõl 
4 2
k a b+= .

A számtani és mértani közép közti egyenlõtlenséget kihasználva:

100 10 40
2 4 4

a b k kab k+ ≥ ⇒ ≥ ⇒ ≥ ⇒ ≥ .

Mivel egyenlõség csak a = b esetén teljesül, így a kerület a 10 cm oldalú négyzet esetén minimális.

Pl.: f: R+ Æ R, 1( )f x x
x

= + . Határozzuk meg az f(x) függvény minimumát!

A számtani és mértani közép közti egyenlõtlenséget kihasználva:

1
1 1 12 1 2 ( ) 2

2

x
x x x x f x

x x x

+
≥ ⋅ ⇔ + ≥ ⋅ ⇔ + ≥ ⇔ ≥ .

Ekkor az f minimumának értéke f(x) = 2, minimum helye: 1 1x
x

= = .

VII. Alkalmazások:
• Statisztika:

– közvélemény-kutatások,
– szavazások,
– gazdasági mutatók,
– osztályátlagok, hiányzási statisztikák,
– felvételi átlagpontok

• Nevezetes középértékek:
– számtani közép: statisztikai átlag kiszámítása,
– mértani közép: átlagos növekedési ütem kiszámítása, magasságtétel, befogótétel,
– négyzetes közép: statisztikai szórás kiszámítása,
– harmonikus közép: átlagsebesség meghatározása

Matematikatörténeti vonatkozások:

• A különféle középértékeket a görög Pitagorasz és tanítványai vezették be a Kr. e. VI–V. szá-
zadban. Õk foglalkoztak az a : b = b : c aránypár vizsgálatával. Így jutottak el a „mértani kö-
zéparányos” fogalmához. Valószínûleg az 1 és a 2 mértani közepének keresésekor találták
meg az elsõ irracionális számot, a 2 -t.

• A statisztika eredetileg „államszámtan” volt. A statisztika kifejezés a latin status (állam, álla-
pot) és az olasz statista (köztisztviselõ, politikus) szavakból származtatható.  A statisztika
már az ókortól kezdve arról tájékoztatta az államok vezetõit, hogy mekkora adókat vethetnek
ki az alattvalóikra, azokból mennyi bevételük van, mekkora katonasággal számolhatnak egy
eljövendõ háborúban. Kínában már 4000 évvel ezelõtt összeírták a lakosságot, az ingatlano-
kat, az ingóságokat. Angliában a XI. században összeírták a földbirtokokat.

• Magyarországon a középkorban a dézsmajegyzékek (kilenced, tized), majd az újkorban
(1530-tól) az urbáriumok (tartalmazta a jobbágyok állatállományát, eszközeit, szerszámait,
telkének nagyságát és milyenségét is), a jobbágyösszeírások az 1700-as években, a népszám-
lálások az 1800-as évektõl jelentették a statisztika alapjait.

• A statisztika a polgári forradalmak után vált igazi tudománnyá. A kapitalizmusban az államok
vezetõin kívül a tõkéseket is érdekelni kezdték a statisztikai felmérések, egyre komolyabb
eszközöket használtak fel adataik feldolgozására hasznuk növelése érdekében.



MATEMATIKA EMELT SZINTÛ SZÓBELI ÉRETTSÉGI TÉMAKÖRÖK, 2026 MOZAIK KIADÓ

53

• A XVII. század óta a matematikai statisztika a matematika önálló ágává fejlõdött, amelynek
fõ célja minél megbízhatóbb hasznosítható információt nyerni a felmérési, megfigyelési, mé-
rési adatokból.

• Az 1890-es egyesült államokbeli népszámlálásra Hollerith feltalálta azt a gépet, amely a sta-
tisztikai adatokat lyukkártyák elektromos leolvasásával és rendszerezésével dolgozta fel. A gép
gyártására Hollerith céget alapított, amelybõl késõbb az IBM jött létre.
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9. Függvénytani alapismeretek, függvények tulajdonságai,
határérték, folytonosság. Számsorozatok.
A számtani sorozat, az elsõ n tag összege

Vázlat:
I. Függvény fogalma, értelmezési tartomány, értékkészlet

II. Függvénytulajdonságok:
• Lokális függvénytulajdonságok: zérushely, monotonitás, lokális (helyi) szélsõérték, gör-

bület, inflexió, folytonosság
• Globális függvénytulajdonságok: értelmezési tartomány, értékkészlet, globális (abszolút)

szélsõérték, paritás, periodikusság, folytonosság, korlátosság
III. Számsorozat definíciója, megadási módjai
IV. Tulajdonságai: monotonitás, korlátosság, konvergencia; kapcsolatuk
V. Számtani sorozat

VI. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Függvény fogalma, értelmezési tartomány, értékkészlet

DEFINÍCIÓ: Legyen A és B két nem üres halmaz. Azt mondjuk, hogy megadunk egy A halmazon
értelmezett B-beli értéket felvevõ függvényt, ha A minden eleméhez hozzárendeljük a B egy
és csakis egy elemét. Jele: f: A Æ B.

DEFINÍCIÓ: Értelmezési tartománynak nevezzük az A halmazt. Jele Df.
Ha az értelmezési tartomány egy valódi részhalmazán vizsgáljuk a függvényt, akkor a függ-
vény leszûkítésérõl beszélünk.
Ha olyan halmazon vizsgáljuk a függvényt, amelynek valódi részhalmaza az A halmaz, de
a hozzárendelés képezhetõ, akkor a függvény kiterjesztésérõl beszélünk.

DEFINÍCIÓ: Értékkészlet a B halmaz azon elemeibõl álló halmaz, amelyek a hozzárendelésnél
fellépnek (vagyis az f(x) értékek). Jele az Rf.

DEFINÍCIÓ: Ha c ŒDf, akkor a c helyen felvett függvényértéket f(c)-vel jelöljük, ez a helyettesítési
érték vagy függvényérték.

DEFINÍCIÓ: Ha az értelmezési tartomány és az értékkészlet is számhalmaz, akkor a függvényt gra-
fikonon tudjuk szemléltetni. A grafikon az (x; f(x)) pontok halmaza.

II. Függvénytulajdonságok

Lokális függvénytulajdonságok: zérushely, monotonitás, lokális (helyi) szélsõérték, görbület,
inflexió, pontbeli folytonosság.

DEFINÍCIÓ: zérushely: Az értelmezési tartomány azon x0 eleme, ahol a függvény értéke 0, azaz
f(x0) = 0.

DEFINÍCIÓ: monotonitás: Az f függvény az értelmezési tartományának egy intervallumában mo-
noton nõ, ha az intervallum minden olyan x1, x2 helyén, amelyre x1 < x2, akkor f(x1) £ f(x2)
teljesül.
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Az f függvény az értelmezési tartományának egy intervallumában monoton csökken, ha az
intervallum minden olyan x1, x2 helyén, amelyre x1 < x2, akkor f(x1) ≥ f(x2) teljesül.
Ha az egyenlõtlenségben az egyenlõség nincs megengedve, akkor szigorú monotonitásról
beszélünk.

DEFINÍCIÓ: lokális (helyi) szélsõérték: Az f függvénynek az x0 ŒDf helyen lokális maximuma
van, ha az x0-nak van olyan I környezete, amelynek minden x ŒDf pontjában f(x) £ f(x0). Az
x0 helyet lokális (helyi) maximumhelynek nevezzük.
Az f függvénynek az x0 ŒDf helyen lokális minimuma van, ha az x0-nak van olyan I kör-
nyezete, amelynek minden x ŒDf pontjában f(x) ≥ f(x0). Az x0 helyet lokális (helyi) mini-
mumhelynek nevezzük.
A monotonitás és a szélsõérték definíciójából következik, hogy ahol a függvény monotoni-
tást vált, ott lokális szélsõértéke van.

DEFINÍCIÓ: görbület: A függvényt egy intervallumban konvexnek nevezzük, ha az intervallum

bármely két x1, x2 pontjára teljesül az 1 2 1 2( ) ( )
2 2

x x f x f x
f

+ +⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

 egyenlõtlenség.

Ha az egyenlõtlenség fordított irányú, akkor a függvény konkáv az adott intervallumon.
Szemléletesen a konvex (illetve konkáv) görbékre jellemzõ, hogy a görbe bármely két pont-
ját összekötõ szakasz a görbe felett (illetve alatt) halad.

x

y

x1 x21 2+

2

x x

1 2( )+ ( )

2

f x f x

1 2+

2

x x
f
� �
� �
� �

DEFINÍCIÓ: inflexió: A függvénygörbének azt a pontját, ahol a görbe konvexbõl konkávba, vagy
konkávból konvexbe megy át, inflexiós pontnak nevezzük.

DEFINÍCIÓ: pontbeli folytonosság: Az f függvény az értelmezési tartománynak egy x0 pontjában
folytonos, ha létezik az x0 pontban határértéke és az megegyezik a helyettesítési értékkel,
vagyis 

→
=

0

0( ) lim ( )
x x

f x f x .

Globális függvénytulajdonságok: értelmezési tartomány, értékkészlet, globális (abszolút) szélsõ-
érték, paritás, periodikusság, intervallumbeli folytonosság, korlátosság.

DEFINÍCIÓ: globális (abszolút) szélsõérték: Az f függvénynek az x0 ŒDf helyen globális maxi-
muma van, ha minden x ŒDf pontjában f(x) £ f(x0). Az x0 helyet globális maximumhelynek
nevezzük.
Az f függvénynek az x0 ŒDf helyen globális minimuma van, ha minden x ŒDf pontjában
f(x) ≥ f(x0). Az x0 helyet globális minimumhelynek nevezzük.
Tehát a szélsõérték abszolút (globális) szélsõérték x0-ban, ha az értelmezési tartomány min-
den pontjára igazak az egyenlõtlenségek.

DEFINÍCIÓ: paritás: Az f függvény páros, ha értelmezési tartományának minden x elemére -x is
eleme az értelmezési tartománynak, továbbá az értelmezési tartomány minden x elemére
f(x) = f(-x).
Az f függvény páratlan, ha értelmezési tartományának minden x elemére –x is eleme az ér-
telmezési tartománynak, továbbá az értelmezési tartomány minden x elemére f(x) = -f(-x).
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A páros függvénynek a grafikonja tengelyesen szimmetrikus az y tengelyre (pl. x ® x2n,
x ®ΩxΩ, x ® cosx).

A páratlan függvények grafikonja középpontosan szimmetrikus az origóra (pl. x ® x2n + 1,

x ® 1
x

, x ® sinx, x ® tgx).

DEFINÍCIÓ: periodikusság: Az f függvény periodikus, ha létezik olyan p π 0 valós szám, hogy
a függvény értelmezési tartományának minden x elemére x + p is eleme az értelmezési tarto-
mánynak, továbbá az értelmezési tartomány minden x elemére f(x + p) = f(x), a legkisebb
ilyen p a függvény periódusa (pl. trigonometrikus függvények, törtrészfüggvény).

DEFINÍCIÓ: intervallumbeli folytonosság: Az f függvény egy nyílt intervallumban folytonos, ha
az intervallum minden pontjában folytonos
(pl.: folytonos: x ® xn, x ® logax, x ® ax, x ® sinx, x ® cosx; nem folytonos: egészrész,

x ® 1
x

, x ® tgx, x ® ctgx).

DEFINÍCIÓ: korlátosság: Az f függvény felülrõl korlátos az értelmezési tartományának egy inter-
vallumában, ha létezik olyan K szám, hogy az intervallum minden x pontjában f(x) £ K. Egy
függvény felsõ korlátai közül a legkisebbet a függvény felsõ határának (szuprémumának)
nevezzük.
Az f függvény alulról korlátos az értelmezési tartományának egy intervallumában, ha léte-
zik olyan k szám, hogy az intervallum minden x pontjában f(x) ≥ k. Egy függvény alsó korlá-
tai közül a legnagyobbat a függvény alsó határának (infimumának) nevezzük.
Korlátos egy függvény, ha alulról és felülrõl is korlátos.

III. Számsorozat

DEFINÍCIÓ: A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész szá-
mok halmaza, értékkészlete pedig valamilyen számhalmaz.
Az a1, a2, …, an tagokból álló sorozatot {an}-nel vagy (an)-nel jelöljük. A sorozat n-edik
tagja: an.

Sorozatok megadása történhet:

• Függvényszerûen: f: N+ Æ R, x ® x2, tagjai 1, 4, 9, 16, …
• Az n-edik általános tagot elõállító formulával: an = 3 ◊ 2n.
• Az elemeit egyértelmûen meghatározó utasítással: {an} = {2n utolsó számjegye}.
• A sorozat tagjaival: 3, 6, 9, 12, 15, 18, …
• Rekurzív módon: megadjuk a sorozat elsõ néhány tagját, valamint a képzési szabályt, amellyel

a sorozat következõ tagjai a megelõzõkbõl megkaphatók.
Pl.: Fibonacci-sorozat: a1 = 1, a2 = 1, an = an - 1 + an - 2,  ha n ≥ 3. A tagok: 1, 1, 2, 3, 5, 8,
13, 21… .

IV. Sorozatok tulajdonságai

DEFINÍCIÓ: Az {an} sorozat szigorúan monoton növõ, ha minden pozitív egész n-re teljesül:
an < an + 1.

DEFINÍCIÓ: Az {an} sorozat szigorúan monoton csökkenõ, ha minden pozitív egész n-re teljesül:
an > an + 1.

Ha nem a szigorú monotonitást, csak a monotonitást kérjük, akkor megengedett az egyenlõ-
ség is.



MATEMATIKA EMELT SZINTÛ SZÓBELI ÉRETTSÉGI TÉMAKÖRÖK, 2026 MOZAIK KIADÓ

57

Ha egy sorozat monotonitását keressük, akkor általában nem az 1n na a +
<>  kapcsolatot vizsgál-

juk, hanem vagy 1 0n na a+
<− > , vagy 1 1n

n

a
a

+ <> . Ha a sorozat szigorúan monoton növõ, akkor

an+1 - an > 0, illetve 1 1n

n

a
a

+ > , ha a sorozat szigorúan monoton csökkenõ, akkor an+1 - an < 0,

illetve 1 1n

n

a
a

+ < . Ha bármelyik esetben a reláció mellett az egyenlõség is teljesül, akkor a so-

rozat csak monoton. Többnyire a feladat típusa dönti el, hogy melyik módszerrel vizsgáljuk
a sorozat monotonitását. Magasabb kitevõjû vagy faktoriálist tartalmazó összefüggések esetén
célszerû a hányadossal való vizsgálat, gyakrabban használjuk a különbséggel való számolást.

DEFINÍCIÓ: Egy {an} sorozatnak K felsõ korlátja, ha an £ K minden pozitív egész n-re teljesül.
Ilyenkor a sorozatot felülrõl korlátosnak nevezzük.

DEFINÍCIÓ: Egy {an} sorozatnak k alsó korlátja, ha an ≥ k minden pozitív egész n-re teljesül.
Ilyenkor a sorozatot alulról korlátosnak nevezzük.

DEFINÍCIÓ: Egy sorozat korlátos, ha alulról és felülrõl is korlátos.

DEFINÍCIÓ: A felülrõl korlátos sorozat legkisebb felsõ korlátját a sorozat felsõ határának, alulról
korlátos sorozat legnagyobb alsó korlátját a sorozat alsó határának nevezzük.

TÉTEL: Felülrõl korlátos sorozatnak van felsõ határa, alulról korlátos sorozatnak van alsó határa.

TÉTEL: Végtelen sok egymásba skatulyázott, zárt intervallumnak van közös pontja. Ha az inter-
vallumok hossza minden pozitív számnál kisebbé válik, akkor pontosan egy közös pont van.

DEFINÍCIÓ: Az {an} sorozat konvergens és határértéke az A szám, ha minden pozitív e számhoz
létezik olyan N pozitív egész, hogy a sorozat aN utáni tagjai mind az A szám e sugarú kör-
nyezetébe esnek, vagyis minden pozitív e számhoz létezik olyan N pozitív egész, hogy min-
den n > N esetén Ωan - AΩ< e. Jelölése: lim n

n
a A

→ ∞
= , vagy an Æ A.

Ez szemléletesen azt jelenti, hogy bármilyen kis pozitív e-ra a sorozatnak csak véges sok
tagja esik az ]A - e, A + e[ intervallumon kívülre.

DEFINÍCIÓ: Az olyan sorozatokat, amelyeknek nincs határértékük, divergens sorozatoknak nevezzük.

TÉTEL: A konvergens sorozatok tulajdonságai:
– Konvergens sorozatnak csak egy határértéke van.
– Ha egy sorozat konvergens, akkor korlátos.
– Ha egy sorozat monoton és korlátos, akkor konvergens. A sorozat határértéke monoton nö-

vekedés esetében a sorozat felsõ, monoton csökkenés esetében a sorozat alsó határa.
– Konvergens sorozat bármely részsorozata is konvergens.
– Ha minden n ŒN+-ra an £ bn £ cn és an Æ A, cn Æ A, akkor bn Æ A. Ez a rendõrelv.

V. Számtani sorozat

DEFINÍCIÓ: Azt a számsorozatot, amelyben a második tagtól kezdve bármely tag és a közvetlenül
elõtte álló tag különbsége állandó, számtani sorozatnak nevezzük. Ez a különbség a diffe-
rencia, jele d.
Ha egy számtani sorozat esetén
• d > 0, akkor a sorozat szigorúan monoton növõ, és alulról korlátos.
• d = 0, akkor a sorozat konstans.
• d < 0, akkor a sorozat szigorúan monoton csökkenõ, és felülrõl korlátos.
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TÉTEL: Ha egy számtani sorozat elsõ tagja a1, differenciája d, akkor n-edik tagja an = a1 + (n - 1)d.

BIZONYÍTÁS: teljes indukcióval.
Definíció szerint a2 - a1 = d  ¤  a2 = a1 + d.
Tegyük fel, hogy a k-adik elemre igaz az állítás, azaz ak = a1 + (k - 1)d.
Bizonyítani kell, hogy a (k + 1)-edik elemre öröklõdik, azaz ak + 1 = a1 + ((k + 1) - 1)d =
= a1 + kd.
A definíció szerint ak + 1 - ak = d  ¤  ak + 1 = ak + d = a1 + (k - 1)d + d = a1 + kd. Így bebi-
zonyítottuk az öröklõdést, tehát igaz az állítás.

TÉTEL: A számtani sorozat elsõ n tagjának összege (Sn) az elsõ és az n-edik tag számtani köze-

pének n-szeresével egyenlõ: 1

2
n

n
a a

S n
+= ⋅ .

BIZONYÍTÁS: az összeget felírjuk az 1., aztán az n-edik tagtól kiindulva:
Sn = a1 + a2 + a3 + ... + an - 2 + an - 1 + an

Sn = an + an - 1 + an - 2 + ... + a3 + a2 + a1

Sn = a1 + (a1 + d) + (a1 + 2d) + ... + (a1 + (n - 3)d) + (a1 + (n - 2)d) + (a1 + (n - 1)d)
Sn = an + (an - d) + (an - 2d) + ... + (an - (n - 3)d) + (an - (n - 2)d) + (an - (n - 1)d)
Összeadva: 1 1 12 ( ) ( ) ( )n n n n

n

S a a a a a a= + + + + + +…�������	������
 .

1

1

2 ( )

2

n n

n
n

S a a n

a a
S n

= + ⋅
+= ⋅

Ezzel a tételt bizonyítottuk.

TÉTEL: Sn másik alakja: 12 ( 1)
2n

a n d
S n

+ −= ⋅ .

TÉTEL: Tetszõleges elem a tõle szimmetrikusan elhelyezkedõknek a számtani közepe:

2
n k n k

n
a a

a − ++= .

Számtani sorozat konvergenciája: Csak d = 0 esetén konvergens a számtani sorozat.

VI. Alkalmazások:
• A Fibonacci-sorozat elemeivel sok helyen találkozhatunk a természetben. Például a fenyõto-

boz, az ananász pikkelyei, a napraforgó magjai Fibonacci-spirálban helyezkednek el.
• Speciális sorozatok határértéke:

– 1lim 0
n n→∞

=

– ( )1lim 1
n

n
e

n→∞
+ = , ami a természetes alapú logaritmus alapszáma (Euler-típusú sorozat).

– Következmény: ( )lim 1
n

n
e

n→∞
+ = aa

–

0, ha 1
, ha 1lim

nem létezik, ha 1
1, ha 1

n

n

q
qq
q
q

→

⎧ <
⎪ >= ⎨ ≤ −⎪ =⎩

•
• .  Ez a mértani sorozat.
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• Analízis: függvény határértékénél, folytonosságánál
• Irracionális kitevõjû hatvány fogalma sorozat határértékével

Matematikatörténeti vonatkozások:

• Babilóniában a Kr. e. VI–III. század között már ismerték a számtani haladvány összegkép-
letének megfelelõ eljárást. Utasítást adtak az elsõ n négyzetszám összegének a kiszámítására.

• A pitagoreusok (Pitagorasz tanítványai) Kr. e. 5–600 körül tudták a számtani sorozat tagjait
összegezni, ismerték az elsõ n páratlan szám összegét (24. tétel).

• A számtani sorozat összegképletére a hinduk az V–XII., a kínaiak pedig a VI–IX. század
között jöttek rá.

• Euler (1717–1783) német matematikus vezette be a róla elnevezett sorozat határértékét e-nek.
• Cauchy (1789–1837) francia matematikus fektette szilárd alapokra a matematika alapvetõ

fogalmait (mint például konvergencia, sorozat, határérték), õ definiálta ezeket a matematiká-
ban megkövetelt szabatossággal.

• A XVII. században Descartes (1596–1650) francia matematikus foglalkozott elõször a függ-
vényekkel: bevezette a változó fogalmát, a függvényt megfeleltetésnek tekintette.
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10. Mértani sorozat, az elsõ n tag összege,
végtelen mértani sor.
Kamatszámítás, gyûjtõjáradék, törlesztõrészlet.
Exponenciális folyamatok a társadalomban és
a természetben

Vázlat:
I. Mértani sorozat, a sorozat általános tagja, az elsõ n tag összege

II. Végtelen mértani sor
III. Kamatszámítás
IV. Gyûjtõjáradék
V. Törlesztõjáradék

VI. Exponenciális folyamatok a társadalomban és a természetben
VII. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Mértani sorozat, a sorozat általános tagja, az elsõ n tag összege

DEFINÍCIÓ: A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész szá-
mok halmaza, értékkészlete pedig valamilyen számhalmaz.
Az a1, a2, …, an tagokból álló sorozatot {an}-nel vagy (an)-nel jelöljük. A sorozat n-edik
tagja: an.

DEFINÍCIÓ: Azt a számsorozatot, amelyben a második tagtól kezdve bármely tag és a közvetlenül
elõtte álló tag hányadosa állandó, mértani sorozatnak nevezzük. Ez a hányados a kvóciens,
jele q.
A definíció kizárja, hogy a sorozat bármely eleme 0 legyen, továbbá a hányados sem lehet 0.

TÉTEL: Ha egy mértani sorozat elsõ tagja a1, hányadosa q, akkor n-edik tagja an = a1 ◊ qn - 1.

BIZONYÍTÁS: teljes indukcióval a számtani sorozat n-edik tagjához hasonlóan.

TÉTEL: A mértani sorozat elsõ n tagjának összege:
• ha q = 1, akkor Sn = n ◊ a1;

• ha q π 1, akkor 1
1

1

n

n
q

S a
q

−= ⋅
−

.

BIZONYÍTÁS:

• Ha q = 1, akkor a sorozat minden tagja a1, így 1 1 1 1

n

nS a a a n a= + + + = ⋅

������

… ;

• ha q π 1, akkor az összeget írjuk fel a1-gyel, és q-val:

Sn = a1 + a1q + a1q2 + ... + a1qn - 2 + a1qn - 1.
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Szorozzuk meg mindkét oldalt q-val:

Snq = a1q + a1q2 + a1q3 + ... + a1qn - 1 + a1qn.

Vonjuk ki a két egyenletet egymásból:

Snq - Sn = a1qn - a1.

Sn(q - 1) = a1(qn - 1).

Osszuk mindkét oldalt (q - 1) π 0-val:

−= ⋅
−1

1
1

n

n
q

S a
q

,

így állításunkat beláttuk.

TÉTEL: Bármely elem négyzete egyenlõ a tõle szimmetrikusan elhelyezkedõ tagok szorzatával:
2
n n k n ka a a− += ⋅ .

TÉTEL: Pozitív tagú sorozatnál bármely elem a tõle szimmetrikusan elhelyezkedõ elemek mértani
közepe: n n k n ka a a− += ⋅ .

Mértani sorozat konvergenciája:
• an Æ a1, ha q = 1.
• an Æ 0, ha ΩqΩ< 1.
• {an} divergens, ha q = -1, vagy ΩqΩ> 1.

II. Végtelen mértani sor

DEFINÍCIÓ: Legyen adott egy {an} számsorozat. Az a1 + a2 + a3 + ... + an - 2 + an - 1 + an + ...
végtelen sok tagú összeget végtelen sornak (vagy röviden sornak) nevezzük.

Jelölés: 
∞

− −
=

+ + + + + + + =∑1 2 3 2 1
1

... ... .n n n i
i

a a a a a a a

DEFINÍCIÓ: Ha az a1 + a2 + a3 + ... + an - 2 + an - 1 + an + ... végtelen sorban az a1, a2, a3, ..., an - 2,
an - 1, an, ... tagok egy mértani sorozat tagjai, akkor a sort mértani sornak nevezzük.
Felmerül a kérdés, hogy mit értsünk végtelen sok szám összegén, hiszen a véges sok szám
esetén megszokott módszerek nem alkalmazhatók.

DEFINÍCIÓ: A sor összegén az

S1 = a1

S2 = a1 + a2

#

Sn = a1 + a2 + a3 + ... + an

úgynevezett részletösszegek sorozatának határértékét értjük, amennyiben ez a határérték lé-
tezik. Tehát a sor összegét egy olyan sorozat határértékével definiáljuk, amely sorozat elsõ
tagja a1, n-edik tagja az eredeti sorozat elsõ n tagjának összege.

TÉTEL: Ha egy mértani sorban ΩqΩ< 1, akkor a mértani sor konvergens, és összege 1

1
a

S
q

=
−

, ha

ΩqΩ≥ 1, akkor nem konvergens.
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III. Kamatszámítás

Pénzügyi folyamatokban a kamat a kölcsönadott, illetve a letétbe helyezett pénzösszeg, vagyis a tõke
használatáért járó díj egy adott idõszakra. A kamat nagyságát a tõke százalékában fejezzük ki, ez
a kamatláb (p%). De számolhatunk kamattényezõvel (q) is, ami a kamatláb 100-ad részével tér el

az 1-tõl: értéknövekedés esetén 1
100

p
q = + , értékcsökkenés esetén 1

100
p

q = − .

Kamatos kamatról akkor beszélünk, ha a kamatozási idõszak végén a kamatot hozzáadják a tõké-
hez, és utána ez a megnövekedett érték kamatozik.
A kamatos kamat számítása a mértani sorozat alkalmazásának olyan speciális esete, amikor a soro-
zatnak van nulladik tagja, amit a pénzügyi számításokban a-val (annuitás rövidítése) jelölünk.

Kamatoskamat-számítás: ha egy a összeg p%-kal kamatozik évente, akkor az n-edik év végére az

összeg 1
100

n

n
p

a a ⎛ ⎞= ⋅ +⎜ ⎟
⎝ ⎠

. Ha 1
100

p
q = +  kamattényezõ, akkor an = a ◊ qn. Ez olyan mértani soro-

zat n-edik eleme, amelynek elsõ eleme aq, hányadosa q.
Az an összefüggésében négy mennyiség szerepel, közülük bármely hármat ismerve a negyedik
kiszámolható.
A kamatozás üteme nemcsak éves, hanem havi, napi stb. is lehet. Ekkor figyelni kell arra, hogy a ka-
mattényezõ és az idõszak hossza azonos nagyságú idõszakra vonatkozzon.
Ha az éves kamatláb p%, az éves kamattényezõ q, akkor a havi és a napi kamattényezõ  kétféleképpen
számolható: vagy havi, illetve napi kamatozású kamatos kamattal, vagy egyszerû kamatozással.

Havi jóváírású kamatos kamattal a havi kamattényező  1212 1
100

p
q+ = ,  napi jóváírású

kamatos kamattal a napi kamattényező 365365 1
100

p
q+ = .

Egyszerû kamatozással a havi kamattényezõ 
1

100
12

p+
, a napi kamattényezõ 

1
100

365

p+
.

Mindig a feladat szövege határozza meg azt, hogy melyik kamatozással kell számolni.

IV. Gyûjtõjáradék
Gyûjtõjáradékról akkor beszélünk, ha egy alapösszeget egyenlõ idõközönként ugyanakkora ösz-
szeggel növelünk, vagyis egyenlõ idõközönként azonos összeget elhelyezünk a bankban ugyanazon
a számlán, vagyis gyûjtjük a pénzt, és minden betett összegünk kamatos kamattal kamatozik.

Gyûjtõjáradék számítása: minden év elején egy a összeget teszünk a bankba, és ez p%-kal kamato-
zik évente úgy, hogy a következõ év elején a megnövekedett összeghez tesszük hozzá az újabbat.

Ha a kamattényezõ 1
100

p
q = + , akkor az n-edik év végén a rendelkezésre álló összeg egy olyan

mértani sorozat elsõ n elemének összege, ahol a1 = aq. Ekkor az n-edik év végére 
1

1

n

n
q

S aq
q

−= ⋅
−

összeget gyûjtünk.

V. Törlesztõrészlet
Törlesztõrészletrõl akkor beszélünk, ha egy hitelt egyenlõ idõközönként ugyanakkora összeggel
fizetünk vissza, azaz egyenlõ idõközönként azonos összeggel csökkentjük a tartozásunkat, vagyis
törlesztjük a hitelt, minden befizetett összeg után csak a fennálló tartozásra fizetünk kamatos ka-
matot.
Törlesztõrészlet számítása: felveszünk n évre Sn nagyságú hitelt évi p%-os kamatra, és minden
évben a összeget törlesztünk. Az n-edik év végére a befizetéseknek kamatokkal megnövelt értéké-
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nek egyenlõnek kell lennie a kölcsön n év alatt p%-os kamatozással megnõtt értékével. Ha a ka-

mattényezõ 1
100

p
q = + , akkor a hitelre fennálló összefüggés: 

1
1

n
n

n
q

S q a
q

−⋅ = ⋅
−

.

VI. Exponenciális folyamatok a társadalomban és a természetben
A társadalomban és a természetben lejátszódó exponenciális folyamatok fõ típusai az idõben, illet-
ve a térben lejátszódó exponenciálisan növekedõ, illetve csökkenõ folyamatok.

Az idõben lezajló exponenciális növekedést a Nt = N0 ◊ elt, a csökkenést a Nt = N0 ◊ e–lt képlet írja
le, ahol N0 a kezdeti mennyiség és Nt a t idõpontbeli mennyiség. Az exponenciális folyamatra jel-

lemzõ a l paraméter, amit rendszerint pozitívnak választanak csökkenés esetén is.

Az exponenciálisan növekedõ mennyiségek minél nagyobbak, annál gyorsabban növekszenek.
A növekedés mértéke arányos a mennyiség nagyságával. Az exponenciálisan növekvõ mennyisé-
gek változását exponenciális függvény írja le.

Az exponenciális változás lehet folytonos (pl. populáció növekedése), illetve diszkrét (pl. kamatos
kamat).

Az egyik legjellemzõbb probléma a Föld túlnépesedése. Egy matematikai modell szerint a népesség
1837 óta (akkor a lakosság kb 1 milliárd volt) az elõzõ évinek 1,1%-ával növekedett. Ez azt jelenti,
hogy1837 óta a Föld lakosságát leíró képlet: Nt = 1 ◊ 1,011t. A modell szerint a Föld lakossága kb.

63 évente megduplázódik (1,01163 ª 2). Mai ismereteink szerint a 2026-ra adott 8 milliárd lakos
becslés közel áll a valósághoz. Az exponenciális népességnövekedés ezek szerint azt is jelenti,
hogy ugyanannyi idõközönként egyre nagyobb számmal növekszik a népesség. A rendelkezésre
álló erõforrások – például energia, nyersanyag, élelem – azonban nem tudnak lépést tartani ezzel
a növekedéssel. Így vagy az életfeltételek romlanak drámaian, vagy a népesség növekedési ütemé-
nek kell drasztikusan csökkennie.

A természetben a populációk növekedési folyamata kezdetben exponenciális függvénnyel írható le
(ideális körülmények között: táplálékbõség, ragadozók hiánya). Elõbb-utóbb azonban eljön a telí-
tõdés ideje, amikor is a növekedés különbözõ okok miatt erõsen lelassul; a természetben ilyen okok
a terület eltartóképessége és a fajtársak vetélkedése.

A diszkrét exponenciális növekedés leggyakoribb felhasználási területe a kamatos kamat számítása,
ekkor a kamatot évente egyszer és nem a kamat keletkezésének idõpontjában tõkésítik, vagyis ve-
szik hozzá a tõkéhez.

A diszkrét exponenciális csökkenés elsõsorban a tárgyak (pl. autó, számítógép) értékcsökkenésének
számolása, ekkor a csökkenés mértéke az elõzõ idõszak százalékában adott. Évi p%-os értékcsök-

kenés esetén n év múlva a tárgy értéke: 1
100

n

n
p

a a ⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

. Pl. ha évente 11%-kal csökken a tárgy

értéke, akkor kb. 6 év alatt a tárgy értéke a felére csökken, a 6 év ebben az esetben a tárgy értéké-
nek felezési ideje.

Térben exponenciális folyamat pl. az egyes sugárzások elnyelõdése homogén közegben. Ezek ha-
sonló képletekkel írhatók fel, mint az idõben exponenciális folyamatok, de idõ helyett a távolság
a változó.

Az exponenciális folyamatok lényege tehát az, hogy egyenlõ idõközök alatt mindig ugyanannyi-
szorosára változik a vizsgált mennyiség.
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VII. Alkalmazások:
• Végtelen szakaszos tizedes törtek közönséges tört alakra hozásakor a konvergens mértani sor

tulajdonságait használjuk

•

0, ha 1
, ha 1lim

nem létezik, ha 1
1, ha 1

n

n

q
qq
q
q

→

⎧ <
⎪ >= ⎨ ≤ −⎪ =⎩

•
• .  Ez a mértani sorozat

• Az N = N0 ◊ e–l(t - t0) bomlási törvényben, ahol N a még el nem bontott részecskék száma,

N0 a kezdeti részecskeszám, l az anyagra jellemzõ bomlási állandó. A felezési idõ alatt a ra-
dioaktív atomok száma a kezdeti érték felére csökken, akármelyik pillanat az idõ mérésének
kezdete

• Exponenciális függvénnyel írható le, azaz mértani sorozat szerint változó folyamatok pl. a ra-
dioaktív izotópok bomlási egyenletei, vagy az oldódás folyamata, a kondenzátor feltöltõdé-
sének és kisülésének folyamata, a baktériumok számának változása.

Matematikatörténeti vonatkozások:

• A legrégebbi írásos emléken, a Rhind-papiruszon (~Kr. e. 1750 körül) található egy mérta-
ni sorozatos feladat: 7 ház mindegyikében 7 macska él, mindegyik macska 7 egeret õriz.
Hány egér volt összesen? Valószínûleg az egyiptomiak ismerték a mértani sorozat összeg-
képletének kiszámítási módját (nem magát a képletet, hanem a módszert).

• A mértani sorozat összegképletét az 1300-as években Beldomandi olasz matematikus találta
ki.

• Koch (1870–1924) svéd matematikus megalkotta a Koch-görbét: egy szabályos háromszög
oldalait harmadoljuk, a középsõ harmad fölé írjunk kifele egy újabb szabályos háromszöget,
majd ezen a háromszögön hajtsuk végre az oldal harmadolását, a középsõ harmad fölé írjunk
kifele egy újabb szabályos háromszöget, majd ezt az eljárást folytassuk a végtelenségig.
Mekkora a kialakult alakzat kerülete, területe? Megoldás végtelen mértani sorral.
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11. A differenciálhányados fogalma, deriválási
szabályok. A differenciálszámítás alkalmazásai
(érintõ, függvényvizsgálat, szélsõérték-feladatok)

Vázlat:
I. Függvény fogalma, értelmezési tartomány, értékkészlet

II. Differenciálhányados
III. Deriválási szabályok
IV. A differenciálszámítás alkalmazásai:

Függvény érintõje 
Függvényvizsgálat
Szélsõérték-feladatok

V. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Függvény fogalma, értelmezési tartomány, értékkészlet

DEFINÍCIÓ: Legyen A és B két nem üres halmaz. Azt mondjuk, hogy megadunk egy A halmazon
értelmezett B-beli értéket felvevõ függvényt, ha A minden eleméhez hozzárendeljük a B egy
és csakis egy elemét. Jele: f: A Æ B.

DEFINÍCIÓ: Értelmezési tartománynak nevezzük az A halmazt. Jele Df.

DEFINÍCIÓ: Értékkészlet a B halmaz azon elemeibõl álló halmaz, amelyek a hozzárendelésnél
fellépnek (vagyis az f(x) értékek). Jele az Rf.

DEFINÍCIÓ: Ha c ŒDf, akkor a c helyen felvett függvényértéket f(c)-vel jelöljük, ez a helyettesítési
vagy függvényérték.

DEFINÍCIÓ: Ha az értelmezési tartomány és az értékkészlet is számhalmaz, akkor a függvényt gra-
fikonon tudjuk szemléltetni. A grafikon az (x; f(x)) pontok halmaza.

II. Differenciálhányados

DEFINÍCIÓ: Legyen f egy ]a, b[ intervallumon értelmezett függvény és x0 az értelmezési tartomány

egy pontja. Ekkor a 0

0

( ) ( )
( )

f x f x
g x

x x
−=
−

 függvényt az f függvény x0 ponthoz tartozó különb-

ségi hányados (differenciahányados) függvényének nevezzük.

x

y

x0 x

( )f x

0( )f x

x– x0

f x – x( ) f( )0
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DEFINÍCIÓ: Az f függvény x0 ponthoz tartozó különbségi hányadosának az x0 helyen vett határér-
tékét (ha ez a határérték létezik és véges) az f függvény x0 pontbeli differenciálhányadosá-
nak vagy deriváltjának nevezzük.

Jel: 
−

−′ =
−0

0
0

0

( ) ( )
( ) lim

x x

f x f x
f x

x x
.

DEFINÍCIÓ: Ha egy függvénynek egy pontban van deriváltja, akkor azt mondjuk, hogy a függvény
ebben a pontban differenciálható (deriválható).
Az x0 pontbeli differenciálhányados egy ábrázolható függvény esetében a függvény grafi-
konjának (x0, f(x0)) pontjához húzott érintõ meredeksége.
Pl.: f: R Æ R, f(x) = x2 - 4x + 5.
Differenciahányados x0 = 1 pontban:

2 2 2( 4 5) (1 4 1 5) ( 3)( 1)4 3( ) 3
1 1 1

x x x xx xg x x
x x x

− + − − ⋅ + − −− += = = = −
− − −

, ha x π 1.

g nincs értelmezve az x = 1 helyen, de 
1

lim( 3) 2
x

x
→

− = −  létezik és véges fi f ′(x) = -2. Tehát

a parabola érintõjének meredeksége x = 1 helyen -2.
Differenciahányados x0-ban:

⎫− + − − + − − +
= = = ⎪− − ⎪

⎬
+ − − − − + − ⎪= = = + − ⎪− − ⎭

2 2 2 2
0 00 0

0 0

0 0 0 0 0
0

0 0

( 4 5) ( 4 5) 4 4
( )

( )( ) 4( ) ( )( 4)
4

x x x x x x x x
g x

x x x x

x x x x x x x x x x
x x

x x x x

 ha x π x0

f ′(x0) =
0

lim
x x→

(x + x0 - 4) = 2x0 - 4 fi  tetszõleges x pontban: f ′(x) = 2x - 4.

DEFINÍCIÓ: Ha f függvénynél az értelmezési tartomány minden olyan pontjához, ahol f differenci-
álható hozzárendeljük a differenciálhányados értékét, akkor az f függvény differenciálhá-
nyados (derivált) függvényét kapjuk. Jelölés: f ′(x).

III. Deriválási szabályok

TÉTEL: Az f és g függvények deriválhatóak az x helyen, és deriváltjuk itt f ′(x), illetve g′(x):
1. f(x) = c,  c = állandó  fi  f ′(x) = 0
2. (c ◊ f(x))′ = c ◊ f ′(x), c ŒR
3. (f(x) ± g(x))′ = f ′(x) ± g′(x)
4. (f(x) ◊ g(x))′ = f ′(x) ◊ g(x) + f(x) ◊ g′(x)

5.
2

( ) ( ) ( ) ( ) ( )
( ) ( )

f x f x g x f x g x
g x g x

′ ′ ′⋅ − ⋅⎛ ⎞ =⎜ ⎟
⎝ ⎠

6. (f(g(x)))′ = f ′(g(x)) ◊ g′(x)

TÉTEL: Elemi függvények deriváltjai:
1. (xn)′ = n ◊ xn - 1, ha x > 0, n ŒN+.
2. (ax)′ = ax ◊ lna, ha a > 0, a π 1.

(ex)′ = ex.

3. 1(log )
lna x

x a
′ =

⋅
, ha a > 0, a π 1, x > 0.

4. 1(ln )x
x

′ = , ha x > 0.
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5. (sinx)′ = cosx.
6. (cosx)′ = -sinx.

TÉTEL: Hatványfüggvény deriváltfüggvénye: (xn)′ = n ◊ xn - 1, ha x > 0, n ŒN+.

BIZONYÍTÁS: teljes indukcióval
n = 1-re igaz: f(x) = x1 esetében

→ → −

−

− − ⎫′ = = = = ⇒ ′ = ⎪− − ⇒⎬
⎪⋅ = ⋅ = ⋅ ⎭

0 0 0

0 0 1
0

0 0

1 1 0

( ) ( )
bal oldal:  ( ) lim lim lim1 1 ( ) 1

igaz

jobb oldal:  1 1 1 1

x x x x x x

f x f x x x
f x x

x x x x

x x

.

Tegyük fel, hogy n = k-ra igaz: (xk)′ = k ◊ xk - 1.
Bizonyítjuk az öröklõdést: (xk + 1)′ = (k + 1) ◊ xk.
Bal oldal:

1 1

hatványozás szorzat
azonossága deriváltja

( ) ( ) ( ) 1 ( 1)k k k k k k k k kx x x x x x x x x k x x k x k x+ −′′ = ⋅ ′ = ⋅ + ⋅ ′ = ⋅ + ⋅ ⋅ = + ⋅ = + ⋅

Ez pedig pontosan a jobb oldal, ezzel állításunkat bebizonyítottuk.

IV. A differenciálszámítás alkalmazásai

Függvény adott pontbeli érintõje:

Ha az f(x) függvény az x0 pontban differenciálható, akkor grafikonjának az (x0; f(x0)) pontban van
érintõje és f ′(x0) ebben a pontban az érintõ meredeksége. Ekkor a függvény x0-beli érintõjének
egyenlete: y = f ′(x0) ◊ (x - x0) + f(x0).

Függvényvizsgálat:

TÉTEL: Az f függvény az ]a, b[ intervallum minden pontjában differenciálható. Ha az intervallum
minden x pontjában
• f ′(x) > 0, akkor f az ]a; b[-n szigorúan monoton nõ.
• f ′(x) < 0, akkor f az ]a; b[-n szigorúan monoton csökken.
• f ′(x) ≥ 0, akkor f az ]a; b[-n monoton nõ.
• f ′(x) £ 0, akkor f az ]a; b[-n monoton csökken.

TÉTEL: Legyen az f függvény az ]a, b[ minden pontjában differenciálható. Ha az intervallum egy
x0 pontjában a deriváltja 0 és ott a derivált függvény elõjelet vált, akkor x0-ban az f függ-
vénynek lokális szélsõértéke van. Ha negatívból pozitívba vált a deriváltfüggvény elõjele (az
f szigorúan monoton csökkenõbõl vált szigorúan monoton növõre), akkor lokális minimu-
ma, ha pozitívból negatívba vált, akkor lokális maximuma van.

TÉTEL: Legyen az f függvény az ]a, b[ minden pontjában kétszer differenciálható. Ha az interval-
lum egy x0 pontjában az elsõ derivált 0 és a második derivált nem nulla, akkor x0-ban az f
függvénynek lokális szélsõértéke van. Ha f ′′(x0) > 0, akkor lokális minimuma, ha f ′′(x0) < 0,
akkor lokális maximuma van.

TÉTEL: Legyen az f függvény egy [a, b]-n deriválható és legyen az f ′ függvény is deriválható
[a, b]-n. Ha az [a, b] minden pontjában f ′′(x) ≥ 0, akkor f az [a, b]-n konvex, ha f ′′(x) £ 0,
akkor konkáv.

TÉTEL: Legyen az f függvény egy [a, b]-n deriválható és legyen az f ′ függvény is deriválható
[a, b]-n. Ha az intervallum egy x0 pontjában f ′′(x0) = 0 és itt az f ′′ függvény elõjelet vált, ak-
kor x0 pontban az f függvénynek inflexiós pontja van.
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Szélsõérték-problémák vizsgálata differenciálszámítással

A szélsõérték-feladat szövegének értelmezése után felírjuk a változók közti összefüggéseket. Ha
több változó van, akkor az egyik segítségével kifejezzük a többit és beírjuk abba a kifejezésbe,
amelynek szélsõértékét vizsgáljuk. Így kapunk egy egyváltozós függvényt, amelynek a szélsõérté-
két kell meghatározni. Ezt a nevezetes közepek közti összefüggésekkel, a függvénytulajdonságok
(transzformáció) alapján, valamint deriválással lehet megállapítani:

Lokális szélsõértéke van a differenciálható függvénynek x0-ban, ha ott az elsõ derivált 0, és a deri-
vált ebben a pontban elõjelet vált, azaz a második derivált nem nulla. A derivált zérushelye szüksé-
ges, de nem elégséges feltétele a helyi szélsõérték létezésének.
Minimuma van, ha az elsõ derivált negatívból pozitívba vált, illetve ha a második derivált ezen
a helyen pozitív; maximuma van, ha az elsõ derivált pozitívból negatívba vált, illetve ha a második
derivált negatív ezen a helyen,

Szélsõérték-vizsgálat f ′(x) segítségével: az f(x) differenciálható függvényt deriváljuk, kiszámoljuk
a deriváltfüggvény zérushelyét, majd a zérushely segítségével megállapítjuk deriváltjának elõjelét.
Ehhez vagy az alapfüggvények tulajdonságait használjuk, vagy a szorzat, illetve hányados elõjelét
vizsgáljuk. Utóbbira akkor van szükség, ha az elsõ derivált nem az alapfüggvények közül kerül ki,
ekkor a deriváltat a lehetõ legjobban szorzattá, illetve hányadossá alakítjuk. Az elsõ derivált elõje-
lébõl következtetni tudunk a függvény monotonitási viszonyaira is: azon az intervallumon, ahol
a függvény elsõ deriváltja pozitív, a függvény nõ, ahol negatív, ott a függvény csökken.
Pl.: f: R+ Æ R, f(x) = x3 - 3x fi f ′(x) = 3x2 - 3.
f ′(x) zérushelye: x = ±1
f ′(x) elõjele:

f ′(x) > 0, ha x < -1, f ′(x) < 0 ha -1 < x < 1, tehát lokális maximuma van az x = -1 helyen, értéke
f(-1) = 2.
f ′(x) < 0 ha -1 < x < 1, f ′(x) > 0, ha x > 1, tehát lokális minimuma van az x = +1 helyen, értéke
f(1) = -2

A függvény szigorúan monoton nõ, ahol f ′(x) > 0, azaz x Œ]-•; -1[ » ]1; •[, szigorúan monoton
csökken, ahol f ′(x) < 0, azaz x Œ]-1; 1[.

Szélsõérték-vizsgálat f ′′(x) segítségével: az f(x) kétszer differenciálható függvényt kétszer derivál-
juk, kiszámoljuk az elsõ derivált zérushelyét, majd a zérushelyeket behelyettesítjük a második deri-
váltba, megállapítjuk második deriváltjának elõjelét. A második derivált elõjelébõl következtetni
tudunk a függvény görbületi viszonyaira is: azon az intervallumon, ahol a második deriváltja pozi-
tív, a függvény konvex, ahol negatív, ott a függvény konkáv, ahol a második derivált elõjelet vált
és a függvény folytonos ebben a pontban, inflexiós pontja van a függvénynek.
Pl.: f: R+ Æ R, f(x) = x3 - 3x fi f ′(x) = 3x2 - 3 fi f ′′(x) = 6x.
f ′(x) zérushelye: x = ±1
f ′′(x) elõjele:

f ′′(-1) = -6, tehát lokális maximuma van az x = -1 helyen, értéke f(-1) = 2.
f ′′(1) = 6, tehát lokális minimuma van az x = +1 helyen, értéke f(1) = -2.

f ′′(x) = 0, ha x = 0, és ebben a pontban elõjelet vált, negatívból pozitívba megy át, azaz a függvény
konkávból konvexbe vált, vagyis inflexiós pontja van az x = 0 pontban.

V. Alkalmazások:
• gazdasági problémák megoldása:

– Ha egy áru iránti kereslet függ a termék árától, akkor milyen ár esetén érhetõ el maximális
összbevétel?

– Ha egy termék elõállítási költsége függ a termék reklámozására fordított összegtõl, akkor
mekkora reklámköltség esetén érhetõ el egy termék minimális elõállítási költsége?
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• matematikai problémák megoldása:
– Adott térfogatú folyadéknak milyen méretekkel rendelkezõ hengeres dobozt tervezzünk,

hogy a felhasznált csomagolóanyag mennyisége minimális legyen?
– Adott sugarú gömbbe írt hengerek közül melyiknek a térfogata maximális?
– Adott alapkörsugarú és magasságú forgáskúpba olyan forgáshengert írunk, amelynek alap-

köre a kúp alapkörének része, fedõköre pedig illeszkedik a kúp palástjára. Milyen esetben
lesz a henger térfogata maximális?

Matematikatörténeti vonatkozások:

• A XVII. században Descartes (1596–1650) francia matematikus foglalkozott elõször a függ-
vényekkel: bevezette a változó fogalmát, a függvényt megfeleltetésnek tekintette. Ezután el-
kezdték vizsgálni a matematikusok a függvénygörbék és érintõk kapcsolatát. Az érintõket
vizsgálva eljutottak a differenciálhányados fogalmához, módszert dolgoztak ki a függvények
menetének vizsgálatára, szélsõértékeinek megállapítására.

• Az analízis alapvetõ fogalmait (pl, sorozat, konvergencia, határérték) Cauchy (1789–1857)
francia matematikus definiálta. Õ az, aki pontosan leírta a differenciál- és integrálszámítást,
elõtte azonban pontosította a határérték fogalmát.
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12. Derékszögû háromszögekre vonatkozó tételek.
A hegyesszögek szögfüggvényei.
Összefüggések a hegyesszögek szögfüggvényei között.
A szögfüggvények általánosítása

Vázlat:
I. Derékszögû háromszögek definíciója

II. A Pitagorasz-tétel és megfordítása
A Thalész-tétel és megfordítása
Magasságtétel, befogótétel
Beírt kör sugarára vonatkozó tétel

III. Hegyesszögek szögfüggvényeinek definíciója
IV. Összefüggések a hegyesszögek szögfüggvényei között
V. A szögfüggvények általános definíciója

VI. Kapcsolatok egyazon szög szögfüggvényei közt
VII. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Derékszögû háromszögek
DEFINÍCIÓ: Azokat a háromszögeket, amelyeknek valamely szöge 90º, azaz derékszög, derékszö-

gû háromszögeknek nevezzük.
A derékszöget bezáró két oldalt befogónak, a derékszöggel szemközti, egyben a leghosszabb
oldalt átfogónak nevezzük.

II. Derékszögû háromszögekre vonatkozó tételek
A derékszögû háromszögekre vonatkozó tételek közül a Pitagorasz-tétel teremt kapcsolatot a há-
romszög oldalai között.

TÉTEL: Pitagorasz-tétel: Ha egy háromszög derékszögû, akkor befogóinak négyzetösszege egyenlõ
az átfogó négyzetével.

BIZONYÍTÁS I.: Bizonyítani kell: a2 + b2 = c2.
Vegyünk fel két a + b oldalú négyzetet. A két négyzet területe egyenlõ.

a

b

a

a

a
aa

a

a

a

a

a b+ 90º=

bb

b

b

b b

b

b

a

a

b

b

b

t3

t2

t1
c

c

c

c

a

a

a

a

b

b

b

b

g

g

g

g

Az elsõ négyzet felosztható egy t1 = a2 és egy t2 = b2 területû négyzetre (a felosztásából ere-
dõ párhuzamosság miatt), továbbá 4 olyan derékszögû háromszögre, amelynek befogói a,
illetve b. Ez a 4 háromszög egybevágó egymással és az eredeti háromszöggel, tehát területük
egyenlõ.
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A második négyzetben elhelyezkedõ négyszög négyzet, mivel oldalai egyenlõ hosszúak
(egybevágó derékszögû háromszögek átfogói), szögei pedig 90º-osak (egybevágó derékszögû
háromszögben a + b = 90º). Ha a derékszögû háromszögek átfogója c, akkor területe t3 = c2.

b

c
a

a

b

Mindkét nagy négyzet területébõl kivonva a 4-4 egybevágó háromszög területét, a fennma-
radó területek egyenlõk lesznek.

BIZONYÍTÁS II.: Vegyünk fel egy derékszögû háromszöget, amelynek befogói a és b, és egy a + b
oldalú négyzetet. A négyzetben helyezzük el a háromszögeket:

a

b

a

a

a
aa

a

a

a

a

a b+ 90º=

bb

b

b

b
b

b

b

a

a

b

b

b

t2

t1
c

c

c

c

a

a

a

a

b

b

b

b

g

g

g

g

ABCD négyszög négyzet, mert oldalai egyenlõk (c), és szögei 90º-osak (g = 180º - (a + b) =
= 180º - 90º = 90º), így az a + b oldalú négyzet területe kétféleképpen: t = (a + b)2, illetve

24
2

a bt c⋅= ⋅ + , azaz

2 2 2 2 2 2 2 2( ) 4 2 2
2

a ba b c a ab b ab c a b c⋅+ = ⋅ + ⇒ + + = + ⇒ + = .

b

c
a

a

b

BIZONYÍTÁS III.: Befogótétellel
Befogótétel miatt:

= ⋅ ,a p c   illetve  ( )b q c c p c= ⋅ = − ⋅ .

Ebbõl a2 = p ◊ c, illetve b2 = (c - p) ◊ c = c2 - p ◊ c.

ab

c

Pq

m
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Összeadva az utolsó két egyenlõséget:

a2 + b2 = p ◊ c + c2 - p ◊ c = c2  fi  a2 + b2 = c2.

BIZONYÍTÁS IV.: Koszinusztétellel

2 2 2 2 2 2 2 2 2 2

0

2 cos90 2 0c a b ab a b ab a b c a b= + − ° = + − ⋅ = + ⇒ = +�	
 .

TÉTEL: A Pitagorasz-tétel megfordítása: ha egy háromszög két oldalhosszának négyzetösszege
egyenlõ a harmadik oldal hosszának négyzetével, akkor a háromszög derékszögû.

BIZONYÍTÁS:

b

c
a

a

C A

B

B’

c’

Tudjuk, hogy az ABC háromszög oldalaira igaz: a2 + b2 = c2. Az a, b befogókkal rajzolunk
egy AB’C derékszögû háromszöget, amelyre Pitagorasz tétele miatt a2 + b2 = (c’)2  fi
c2 = (c’)2  fi  c = c’. Ekkor az ABC és AB’C háromszög oldalai páronként megegyeznek  fi
a két háromszög egybevágó fi  megfelelõ szögeik páronként egyenlõk  fi  C-nél ABC há-
romszögben derékszög van.

TÉTEL: Thalész-tétel: ha egy kör átmérõjének két végpontját összekötjük a kör bármely más
pontjával, akkor derékszögû háromszöget kapunk.

BIZONYÍTÁS: O középpontú kör, AB átmérõ, C tetszõleges pont a körvonalon.

A

C

O

a b
B

a b

OA = OC = r  fi  Az OAC háromszög egyenlõ szárú  fi  OAC¬ = OCA¬ = a.
OC = OB = r  fi  Az OBC háromszög egyenlõ szárú  fi  OBC¬ = BCO¬ = b.
Az ABC háromszög belsõ szögeinek összege 180º  fi  2a + 2b = 180º  fi  a + b = 90º  fi
ACB¬ = 90º.

TÉTEL: A Thalész-tétel megfordítása: ha egy háromszög derékszögû, akkor köré írható körének
középpontja az átfogó felezõpontja.

BIZONYÍTÁS: Az ABC derékszögû háromszöget tükrözzük az átfogó F felezõpontjára. A tükrözés
tulajdonságai miatt BC = AC’ és CA = BC’ és AC’ = BC’ szögei 90º-osak. A téglalap átlói
egyenlõk és felezik egymást fi FA = FB = FC fi F az ABC háromszög köré írt kör közép-
pontjával egyenlõ.

C A

B C’

F

a

a
b

b
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TÉTEL: A Thalész-tétel és megfordítása összefoglalva: a sík azon pontjainak halmaza, amelyek-
bõl egy megadott szakasz derékszögben látszik, a szakaszhoz mint átmérõhöz tartozó kör,
elhagyva belõle a szakasz végpontjait.

TÉTEL: Magasságtétel: Derékszögû háromszögben az átfogóhoz tartozó magasság hossza mértani
közepe azon két szakasz hosszának, amelyekre a magasság az átfogót osztja.

BIZONYÍTÁS: A tétel bizonyításánál a TBC és TAC háromszögek hasonlóságát használjuk.

2qm m p q m p q
p m

= ⇒ = ⋅ ⇒ = ⋅

A B

T

O

C

p

m ab

q

TÉTEL: Befogótétel: Derékszögû háromszög befogójának hossza mértani közepe az átfogó és a be-
fogó átfogóra esõ merõleges vetülete hosszának.

BIZONYÍTÁS: A tétel bizonyításánál a TBC és az ABC háromszögek hasonlóságát használjuk.

2a c a p c a p c
p a

= ⇒ = ⋅ ⇒ = ⋅

Hasonlóan a TCA és az ABC háromszögek hasonlóságából belátható: b q c= ⋅ .

A B

T

O

C

p

m ab

q

TÉTEL: Beírt kör sugarára vonatkozó tétel: Derékszögû háromszög átfogója a két befogó össze-
gével és a beírt kör sugarával kifejezve: c = a + b - 2r.

BIZONYÍTÁS: Körhöz húzott érintõszakaszok egyenlõsége miatt c = a - r + b - r = a + b - 2r.

r

r

r

r

r

b r–

b r–

a – r

a – r

A Thalész-tétel miatt c = 2R, ahol R a háromszög köré írt kör sugara. Ebbõl és az elõzõ

tételbõl következik: 2R = a + b - 2r  fi  
2

a bR r ++ = .
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III. Hegyesszögek szögfüggvényeinek definíciója
A hegyesszögek szögfüggvényeit derékszögû háromszögekkel is bevezethetjük. Kihasználjuk,
hogy a két derékszögû háromszög hasonló, ha valamely hegyesszögük megegyezik. A hasonlóság
következtében egy derékszögû háromszög oldalainak arányát a háromszög egyik hegyesszöge egy-
értelmûen meghatározza. Erre a függvényszerû kapcsolatra vezetjük be a szögfüggvényeket:

DEFINÍCIÓ: Az a hegyesszöget tartalmazó tetszõleges derékszögû háromszögben
sina = az a-val szemközti befogó hosszának és az átfogó hosszának hányadosa;
cosa = az a melletti befogó hosszának és az átfogó hosszának a hányadosa;
tga = az a-val szemközti befogó hosszának és az a melletti befogó hosszának a hányadosa;
ctga = az a melletti befogó hosszának és az a-val szemköztes befogó hosszának a hányadosa.

A

B

C

a

b

c

a

sin a
c

=a ,  cos b
c

=a ,  tg a
b

=a ,  ctg b
a

=a

IV. Összefüggések a hegyesszögek szögfüggvényei között

A definíciók alapján könnyen igazolhatók a következõ azonosságok, ahol 0º < a < 90º:

sintg
cos

= aa
a

,  cosctg
sin

= aa
a

,  1tg
ctg

=a
a

sina = cos(90º - a),  cosa = sin(90º - a)

tga = ctg(90º - a),  ctga = tg(90º - a)

sin2a + cos2a = 1

Nevezetes szögek szögfüggvényei:

sin cos tg ctg

30° 1
2

3
2

3
3

3

45° 2
2

2
2

1 1

60° 3
2

1
2

3
3

3

1

1

45°

3

2

1 1

45°

2

30°

60°
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V. Szögfüggvények általánosítása

DEFINÍCIÓ: A koordináta-rendszerben az i(1; 0) bázisvektor origó körüli a szöggel való elfor-
gatásával keletkezõ e egységvektor elsõ koordinátája az a szög koszinusza, második koor-
dinátája az a szög szinusza.

a ŒI. a ŒII. a ŒIII. a ŒIV.

0
2

< < pa
2

< <p a p 3
2

< < pp a 3 2
2

< <p a p

xO

y

(cos ; sin )a a

a

i
�

e
�

xO

y

(cos ; sin )a a

a

i
�

–

p – a

e
�

xO

y

(cos ; sin )a a

a i
�

– –

a – p
e
�

x

O

y

(cos ; sin )a a

a i
�

–

e
� 2p – a

cosa = -cos(p - a)
sina = sin(p - a)

cosa = -cos(a - p)
sina = -sin(a - p)

cosa = cos(2p - a)
sina = -sin(2p - a)

DEFINÍCIÓ: A sin
cos
a
a

 hányadost, ha cosa π 0, vagyis ha 
2

k≠ +pa p  (k ŒZ), az a szög tangensé-

nek nevezzük.
A koordináta-rendszerben az i vektortól a szöggel elforgatott e egységvektor egyenese ál-
tal az origó középpontú, egységsugarú kör (1; 0) pontjában húzott érintõbõl kimetszett pont
2. koordinátája az a szög tangense.

a ŒI. a ŒII. a ŒIII. a ŒIV.

0
2

< < pa
2

< <p a p 3
2

< < pp a 3 2
2

< <p a p

y

e
� tga

O

a

xi
�

x

y

a

i
�

e
�

tga

xO

y

a i
�

e
�

tga

x

O

y

a i
�

e
�

tga

tga = -tg(p - a) tga = tg(a - p) tga = -tg(2p - a)
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DEFINÍCIÓ: A cos
sin
a
a

 hányadost, ha sina π 0, vagyis ha a π kp (k ŒZ), az a szög kotangensének

nevezzük.
A koordináta-rendszerben az i vektortól a szöggel elforgatott e egységvektor egyenese ál-
tal az origó középpontú, egységsugarú kör (0;1) pontjában húzott érintõbõl kimetszett pont
1. koordinátája az a szög kotangense.

a ŒI. a ŒII. a ŒIII. a ŒIV.

0
2

< < pa
2

< <p a p 3
2

< < pp a 3 2
2

< <p a p

y

e
�

ctga

O

a

xi
�

x

y

a

i
�

e
�

ctga

xO

y

a i
�

e
�

ctga

x

O

y

a i
�

e
�

ctga

ctga = -ctg(p - a) ctga = ctg(a - p) ctga = -ctg(2p - a)

VI. Kapcsolatok egyazon szög szögfüggvényei között

TÉTEL: 1ctg
tg

=a
a

, ha 
2

k≠ pa  (k ŒZ)

1tg
ctg

=a
a

, ha 
2

k≠ pa  (k ŒZ)

fi  tga ◊ ctga = 1  ( )2
k≠ pa

TÉTEL: sin2a + cos2a = 1 minden valós a-ra (pitagoraszi összefüggés).

BIZONYÍTÁS: A szögfüggvények definíciója szerint az a irányszögû e egységvektor koordinátái:
(cosa; sina).

xO

y

cosa

sina
a

i
�

e
�

j
�

���

Egyrészt az egységvektor hossza 1: (ΩeΩ= 1), másrészt az e vektor hossza: ΩeΩ = 2 2
1 2e e+  =

= 2 2sin cos+a a .

Ebbõl 1 = 2 2sin cos+a a . Mivel nemnegatív számok állnak a két oldalon, négyzetre eme-
léssel: sin2a + cos2a = 1.

KÖVETKEZMÉNY: tetszõleges a szög esetén:

= −a a2sin 1 cos ,   illetve  2cos 1 sin= −a a
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VII. Alkalmazások:
• Pitagorasz-tétel:

– síkgeometria: háromszög, trapéz magasságának számolása
– koordináta-geometria: két pont távolsága, vektor hossza

• Thalész-tétel:
– síkgeometria: körhöz külsõ pontból húzott érintõk szerkesztése
– koordináta-geometria: érintõk egyenlete

• Magasságtétel:
– mértani közép szerkesztése

A C

B

O

Öab

D

ba

• Forgásszögek szögfüggvényei:
– háromszög trigonometrikus területképlete
– szinusztétel, koszinusztétel

– négyszög területe: 
⋅ ⋅= asin

2
e f

t  (e, f átlók, a = átlók szöge)

– rezgõmozgás kitérés-idõ, sebesség-idõ, gyorsulás-idõ függvénye trigonometrikus függ-
vény

Matematikatörténeti vonatkozások:

• A derékszögû háromszögekrõl fennmaradt elsõ írásos emlékek a Rhind-papiruszon talál-
hatók, amely Kr. e. 1750-bõl származik: ismerték a 3, 4, 5 oldalú derékszögû háromszöget.

• Kr. e. 2000 körül az egyiptomi papok derékszögszerkesztésre csomózott kötelet használtak,
amihez ismerniük kellett a Pitagorasz-tételt: terepen a derékszög kitûzését 12 csomós kötél
és 3 karó segítségével végezték.

• Kínában Kr. e. 1200 és 1100 közötti naptárban olyan rajz látható, amely azt mutatja, hogy
ismerték a Pitagorasz-tételt legalább a 3, 4, 5 oldalú derékszögû háromszög esetében. Ezen
a rajzon egy 3+4 egység oldalú négyzet kerületén vannak a belsõ 5 egység hosszúságú négy-
zet csúcspontjai (a Pitagorasz-tétel I. bizonyításában szereplõ ábrához hasonlóan).

• Pitagorasz a Kr. e. VI. században az ókori Görögországban élt, tételét viszont már a babiló-
niaiak 4000 évvel ezelõtt is ismerték, Pitagoraszhoz csak azért fûzõdik a tétel, mert rájött egy
új bizonyításra.

• Thalész szintén a Kr. e. VI. században élt az ókori Görögországban, az elsõ olyan matemati-
kus volt, akinek bizonyítási igénye volt. Neki tulajdonítják a szög fogalmának kialakítását.
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• Ptolemaiosz görög csillagász a Kr. u. II. században 30 percenkénti beosztással készített
„húrtáblázatokat”, amelyek a késõbb kialakult trigonometrikus függvények elõdei voltak.

• A trigonometrikus függvények közti összefüggések és azonosságok felfedésében nagy érde-
mei vannak Viète (1540–1603) francia matematikusnak.
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13. Háromszögek nevezetes vonalai, pontjai és körei

Vázlat:
I. Oldalfelezõ merõlegesek, a háromszög köré írt kör középpontja

II. Szögfelezõk, háromszögbe, illetve háromszöghöz írt kör középpontja
III. Magasságvonalak, a háromszög magasságpontja
IV. Súlyvonalak, a háromszög súlypontja
V. Középvonalak

VI. Euler-egyenes, Feuerbach-kör
VII. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Oldalfelezõ merõlegesek, a háromszög köré írt kör középpontja

DEFINÍCIÓ: A síkon egy szakasz felezõmerõlegese az az egyenes, amely a szakasz felezõpontjára
illeszkedik és merõleges a szakaszra.

TÉTEL: A szakasz felezõmerõlegese a szakasz két végpontjától egyenlõ távol lévõ pontok halmaza.

TÉTEL: A háromszög három oldalfelezõ merõlegese egy pontban metszi egymást. Ez a pont a há-
romszög köré írt kör középpontja.

BIZONYÍTÁS: ABC háromszögben AB és AC oldalfelezõ merõlegeseit tekintsük. Ezek az egyenesek
metszik egymást, mert a háromszög oldalai nem párhuzamosak egymással. Legyen a két ol-
dalfelezõ merõleges metszéspontja K. Ekkor K egyenlõ távolságra van A-tól és B-tõl (mert K
illeszkedik fc-re), illetve A-tól és C-tõl (mert K illeszkedik fb-re) is. Következésképpen
egyenlõ távol van B-tõl és C-tõl is, azaz K illeszkedik BC szakaszfelezõ merõlegesére.  fi
KA = KB = KC, azaz A, B és C egyenlõ távolságra vannak K-tól  fi  mindhárom pont illesz-
kedik egy K középpontú KA = KB = KC = r sugarú körre.

C

A

B

K

f
c

f
b

K hegyesszögû háromszög esetén a háromszögön belül, derékszögû háromszögnél az átfogó fele-
zõpontjába (Thalész tétele), tompaszögû háromszögnél a háromszögön kívül esik.

O
O

O
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II. Szögfelezõk, háromszögbe, illetve háromszöghöz írt kör középpontja

DEFINÍCIÓ: Egy konvex szög szögfelezõje a szög csúcsából kiinduló, a szögtartományban haladó
azon félegyenes, amely a szöget két egyenlõ nagyságú szögre bontja.

TÉTEL: Egy konvex szögtartományban a száraktól egyenlõ távolságra lévõ pontok halmaza a szög-
felezõ.

TÉTEL: A háromszög három belsõ szögfelezõje egy pontban metszi egymást. Ez a pont a három-
szögbe írt kör középpontja.

BIZONYÍTÁS:

A B

C

T3

T2

T1

O

fa

fb

a

2
b

2

Két belsõ szögfelezõ metszéspontjáról belátjuk, hogy rajta van a harmadikon. Vegyük fel az

a és b szögfelezõjét: fa és fb. Ez a két félegyenes metszi egymást, mert 0º 180º
2 2

< + <ba .

Így fa és fb  metszéspontja az O pont. A szögfelezõ a szög száraitól egyenlõ távol lévõ pon-

tok halmaza a szögtartományban, így mivel O illeszkedik fa-ra fi OT1 = OT3, illetve O il-

leszkedik fb-ra  fi  OT1 = OT2, tehát OT2 = OT3, vagyis O egyenlõ távol van az AC és a CB
szögszáraktól, így O illeszkedik fg-ra, azaz O az fa, fb és fg egyetlen közös pontja.
A bizonyítás során kiderült, hogy O egyenlõ távol van a háromszög oldalaitól, ezért köréje
egy olyan kör írható, amely a háromszög oldalait érinti.

TÉTEL: A háromszög egy belsõ, és a másik két csúcshoz tartozó külsõ szögfelezõje egy pontban
metszi egymást, ez a pont a háromszög hozzáírt körének középpontja. A háromszögnek 3
hozzáírt köre van.

O

A

B

C

O1

O2

O3

TÉTEL: A háromszög ugyanazon szögének külsõ és belsõ szögfelezõje merõleges egymásra.

III. Magasságvonalak, a háromszög magasságpontja

DEFINÍCIÓ: A háromszög magassága az egyik csúcsból a szemközti oldal egyenesére bocsátott
merõleges szakasz. A háromszög magasságának egyenese a háromszög magasságvonala.

TÉTEL: A háromszög magasságvonalai egy pontban metszik egymást. Ez a pont a háromszög ma-
gasságpontja.
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BIZONYÍTÁS: Visszavezetjük a háromszög oldalfelezõ merõlegeseire vonatkozó tételre.

B

C

A mc

A’B’

C’

c

Vegyük fel az ABC háromszöget, és mindhárom csúcsán keresztül húzzunk párhuzamos
egyenest a szemközti oldallal. ⇒  A’B’C’ háromszög.
Belátjuk, hogy mc az A’B’ oldalfelezõ merõlegese: mc merõleges AB-re és A’B’ párhuzamos
AB-vel ⇒  mc merõleges A’B’-re. AB párhuzamos A’B’-vel és BC párhuzamos B’C’-vel ⇒
ABCB’ paralelogramma ⇒  CB’ = AB, hasonlóan ABA’C paralelogramma ⇒  A’C = AB,
ebbõl B’C = CA’ ⇒  C felezõpontja A’B’-nek ⇒  mc oldalfelezõ merõlegese A’B’-nek.
Hasonlóan belátható, hogy ma és mb is az A’B’C’ háromszög oldalfelezõ merõlegesei. Az ol-
dalfelezõ merõlegesekre vonatkozó tétel alapján tudjuk, hogy ezek egy pontban metszik
egymást, tehát beláttuk, hogy az ABC háromszög magasságvonalai is egy pontban metszik
egymást.

A magasságpont hegyesszögû háromszög esetén a háromszög belsejében, derékszögû háromszög-
nél a derékszögû csúcsban, tompaszögû háromszögnél a háromszögön kívül helyezkedik el.

A

B

C=M

A

B

C

M

B

M

A

C

IV. Súlyvonalak, a háromszög súlypontja

DEFINÍCIÓ: A háromszög csúcsát a szemközti oldal felezõpontjával összekötõ szakasz a három-
szög súlyvonala.

TÉTEL: A háromszög súlyvonalai egy pontban metszik egymást, ezt a pontot a háromszög súly-
pontjának nevezzük. A súlypont harmadolja a súlyvonalakat úgy, hogy a csúcs felé esõ sza-
kasz úgy aránylik az oldal felé esõ szakaszhoz, mint 2 : 1.

A B

C

S

FaFb

Fc
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V. Középvonalak

DEFINÍCIÓ: A háromszög két oldalfelezõ pontját összekötõ szakaszt a háromszög középvonalá-
nak nevezzük.
Minden háromszögnek 3 középvonala van.

TÉTEL: A háromszög középvonala párhuzamos a felezõpontokat nem tartalmazó oldallal, és fele-
olyan hosszú.

A B

C

c

FaFb

= = ,
2 2

a b

AB c
F F

a bF F AB

VI. Euler-egyenes, Feuerbach-kör

TÉTEL: A háromszög magasságpontja, súlypontja és a körülírt kör középpontja egy egyenesen van
(Euler-féle egyenes). A súlypont a másik kettõ távolságát harmadolja és a körülírt kör kö-
zéppontjához van közelebb.

A

C

B

K

S

M

FAB

FBC

FAC

TÉTEL: Egy háromszög oldalainak felezõpontjai, magasságainak talppontjai és a magasságpontot
a csúcsokkal összekötõ szakaszok felezõpontjai egy körön vannak (Feuerbach-kör).
A Feuerbach-kör középpontja (O) felezi a magasságpontot (M) és a köré írható kör közép-
pontját (K) összekötõ szakaszt, sugara a háromszög köré írható kör sugarának a fele. Vagyis

az M pontból a köré írt kör 1
2

=l -es arányú kicsinyített képe a Feuerbach-kör.

A

M K
O

MA

M’A

M’B

M’C F’C

F’B F’A

FA

FB

MB

MC

FC
B

C

C’

A’ B’
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VII. Alkalmazások:
• Háromszögszerkesztési feladatok
• Koordináta-geometria: 3 ponton átmenõ kör egyenlete, háromszög súlypontjának kiszámítása
• Súlyvonal, súlypont (homogén anyageloszlású háromszög esetén) fizikában: súlyvonal

mentén, illetve súlypontban alátámasztva a háromszög egyensúlyban van
• Kör középpontjának szerkesztése
• Területszámítási feladatok a nevezetes körök sugarainak felhasználásával

4
abcR

t
= ,  tr

s
= ,  ahol  

2
ks =

Matematikatörténeti vonatkozások:

• A geometria görög szó, eredeti jelentése földmérés. A geometria az ókori görög matematiku-
sok tevékenysége által vált tudománnyá. Thalészen, a matematika atyján kívül a legnagyobb
görög geométernek tartott Apollóniusz (Kr. e. III. századi görög matematikus) is sokat fog-
lalkozott a háromszögekkel és a velük kapcsolatos összefüggésekkel. A tételben szereplõ is-
meretek nagy részét már õk is tudták.

• Thalész a Kr. e. VI. században élt az ókori Görögországban, az elsõ olyan matematikus volt,
akinek bizonyítási igénye volt, foglalkozott állításai megfordításával is: így jutott el a derék-
szögû háromszög köré írt kör középpontjához.

• Eukleidész Kr. e. 300 körül élt görög matematikus Elemek címû mûvében meghatározta a geo-
metriai alapszerkesztések axiómáit, szögletes síkidomok tulajdonságait, A Pitagorasz-tételt,
a kör és vele kapcsolatos tételeket, a kerületi és középponti szögeket, a szabályos sokszögek
szerkesztését.

• Euler (1707–1783) svájci matematikus a háromszög nevezetes vonalait, pontjait is vizsgálta,
ismerte a Feuerbach-kört, de ez a tétel feledésbe merült.

• Feuerbach (1800–1834) német matematikus újra felfedezte az Euler által már megtalált kört,
amit ezután Feuerbachról neveztek el.
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14. Összefüggések az általános háromszögek oldalai
között, szögei között, oldalai és szögei között

Vázlat:
I. Háromszögek csoportosítása szögeik és oldalaik szerint

II. Összefüggések a háromszög oldalai között (háromszög-egyenlõtlenségek, Pitagorasz-tétel)
III. Összefüggések a háromszög szögei között (belsõ, külsõ szögek)
IV. Összefüggések a háromszög szögei és oldalai között (koszinusztétel, szinusztétel, szögfügg-

vények)
V. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Háromszögek csoportosítása szögeik és oldalaik szerint

DEFINÍCIÓ: Háromszög az a zárt szögvonal, amelyeknek 3 oldala és 3 csúcsa van.

DEFINÍCIÓ: Egy háromszög hegyesszögû, ha minden szöge hegyesszög.

DEFINÍCIÓ: Egy háromszög derékszögû, ha van egy 90º-os szöge.

DEFINÍCIÓ: Egy háromszög tompaszögû, ha van egy tompaszöge.

DEFINÍCIÓ: Egy háromszög szabályos (vagy egyenlõ oldalú), ha három oldala egyenlõ hosszú.

DEFINÍCIÓ: Egy háromszög egyenlõ szárú (vagy szimmetrikus), ha van két egyenlõ oldala.

háromszögek

hegyesszögû derékszögû tompaszögû

egyenlõ szárú
egyenlõ
oldalú

II. Összefüggések a háromszög oldalai közt

TÉTEL: Háromszög-egyenlõtlenségek: a háromszög bármely két oldalának összege nagyobb a har-
madiknál: a + b > c, a + c > b, b + c > a.

TÉTEL: Egy háromszögben bármely két oldal különbségének abszolút értéke kisebb a harmadik-
nál: Ωa - cΩ< b, Ωa - bΩ< c, Ωb - cΩ< a.

TÉTEL: Pitagorasz-tétel: Bármely derékszögû háromszögben a két befogó négyzetének összege
egyenlõ az átfogó négyzetével.
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III. Összefüggések a háromszög szögei közt

TÉTEL: A háromszög belsõ szögeinek összege 180º.

TÉTEL: A háromszög külsõ szögeinek összege 360º.

TÉTEL: A háromszög egy külsõ szöge egyenlõ a nem mellette fekvõ két belsõ szög összegével.

IV. Összefüggések a háromszög oldalai és szögei között

TÉTEL: Egy háromszögben egyenlõ hosszúságú oldalakkal szemben egyenlõ nagyságú szögek van-
nak, egyenlõ nagyságú szögekkel szemben egyenlõ hosszúságú oldalak vannak.

TÉTEL: Bármely háromszögben két oldal közül a hosszabbikkal szemben nagyobb belsõ szög van,
mint a rövidebbikkel szemben, illetve két szög közül a nagyobbikkal szemben hosszabb ol-
dal van, mint a kisebbikkel szemben.

DEFINÍCIÓ: Derékszögû háromszögben bevezetjük a szögfüggvények fogalmát a hasonló három-
szögek tulajdonságait kihasználva:
• sina az a szöggel szemközti befogó és az átfogó hányadosa,
• cosa az a szög melletti befogó és az átfogó hányadosa,
• tga az a szöggel szemközti befogó és az a szög melletti befogó hányadosa,
• ctga az a szög melletti befogó és az a szöggel szemközti befogó hányadosa.

sin a
c

=a ,  cos b
c

=a ,  tg a
b

=a ,  ctg b
a

=a

A

B

C

a

b

c

a

TÉTEL: Szinusztétel: Egy háromszögben két oldal hosszának aránya egyenlõ a velük szemközti
szögek szinuszának arányával:

sin
sin

a
b

= a
b

A szinusztétel a háromszög három oldalára is felírható, ekkor a : b : c = sina : sinb : sing.

BIZONYÍTÁS: A háromszög oldalainak és szögeinek szokásos jelölését alkalmazva írjuk fel a há-
romszög területét kétféleképpen:

sinsin
2 2

a cb cT
βα ⋅ ⋅⋅ ⋅= =

Az utóbbi egyenlõség mindkét oldalát szorozzuk meg 2-vel és osszuk el c-vel:

b ◊ sina = a ◊ sinb
Ezt keresztbeosztással rendezzük:

sin
sin

a
b

α
β=

Ezzel bebizonyítottuk az állítást.
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Szinusztétel alkalmazása:

• Ha adott a háromszög egy oldala és két szöge, akkor bármely oldal kiszámolható (mert ekkor
kiszámolható a belsõ szögösszegbõl a harmadik szög).

• Ha adott a háromszög két oldala és nem az általuk közbezárt szög ismert, akkor két eset le-
hetséges:
– Ha a két oldal közül a nagyobbikkal szemköztes szög ismert, akkor kiszámolható a kiseb-

bik oldallal szemköztes szög. Ebben az esetben a háromszög egyértelmûen meghatározott.
– Ha a háromszög két oldalát és a rövidebbel szemköztes szöget ismerjük, akkor kiszámol-

ható a nagyobbik oldallal szemköztes szög, amire háromféle megoldás is lehet:
1. ha a szög szinuszára pozitív, de 1-nél kisebb értéket kapunk, akkor két megoldás van,

a szög lehet hegyesszög és tompaszög is. Ekkor a háromszög nem egyértelmûen meg-
határozott, két ilyen háromszög létezik.

2. ha a szög szinuszára 1-et kapunk, akkor egy megoldás van, a szög 90º, ez egy derék-
szögû háromszög.

3. ha a szög szinuszára 1-nél nagyobb számot kapunk, akkor nincs ilyen szög, azaz nincs
az adatoknak megfelelõ háromszög.

Ebben az esetben inkább a koszinusztételt alkalmazzuk, ekkor másodfokú egyenletet ka-
punk a harmadik oldalra, így viszont egyértelmûen eldönthetõ az oldal hossza (a másod-
fokú egyenletnek 0, 1, 2 megoldása van, illetve feltétel, hogy az oldal hossza pozitív, vagy
a háromszög-egyenlõtlenség is segíthet abban, hogy eldöntsük, hogy melyik eredmény
megoldása a feladatnak).

TÉTEL: Koszinusztétel: egy háromszög egyik oldalhosszának négyzetét megkapjuk, ha a másik
két oldal négyzetösszegébõl kivonjuk a két oldal hosszának és a közbezárt szög koszinuszá-
nak kétszeres szorzatát: c2 = a2 + b2 - 2abcosg.

BIZONYÍTÁS: Vektorok skaláris szorzatának felhasználásával fogjuk bizonyítani, ezért a három-
szög oldalait irányítjuk:

CB a=
JJJG

,  CA b=
JJJG

,  =BA c
JJJG

.

Jelölje a a= , b b=  és c c= .

A B

C

g

CA CB

BA

Ekkor c a b= − . Az egyenlet mindkét oldalát önmagával skalárisan szorozva:

2 2 2 22( ) 2c a b c a ab b= − ⇒ = − + .

2 2cos0º 1c c c c c c= ⋅ ⋅ = ⋅ ⋅ = .

Hasonlóan 2 2a a=  és 2 2b b= .

cos cosa b a b a b⋅ = ⋅ ⋅ = ⋅ ⋅g g .

Ezeket beírva a 2 2 22c a ab b= − +  egyenletbe, kapjuk: c2 = a2 + b2 - 2abcosg.
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Következmények:

• ha g = 90º, vagyis a háromszög derékszögû, akkor c2 = a2 + b2, ami a Pitagorasz-tétel.
• ha g < 90º, akkor bármely két oldalának négyzetösszege nagyobb a harmadik oldal négyzeténél.
• ha g > 90º, akkor a két rövidebb oldal négyzetösszege kisebb a harmadik oldal négyzeténél.

A koszinusztétel alkalmazása:

• Ha adott a háromszög két oldala és az általuk közbezárt szög, akkor kiszámítható a szöggel
szembeni oldal.

• Ha adott a háromszög három oldala, akkor kiszámítható a háromszög bármely szöge.
Ha keressük a háromszög szögeit, akkor ebben az esetben a háromszög legnagyobb szögét
érdemes kiszámítani koszinusztétellel, ami a leghosszabb oldallal szemben van, mert az he-
gyes-, derék- és tompaszögre is egyértelmû megoldást ad.

V. Alkalmazások:
• Háromszögek szerkesztése, háromszög ismeretlen adatainak kiszámítása
• Sokszögekben oldalak, átlók, szögek kiszámítása háromszögekre bontással
• Földmérésben, térképészetben, csillagászatban mért adatokból távolságok és szögek kiszá-

mítása
• Terepfeladatok megoldásánál: pl.: megközelíthetetlen pontok helyének meghatározása
• Modern helymeghatározás: GPS

Matematikatörténeti vonatkozások:

• Thalész a Kr. e. VI. században élt az ókori Görögországban, az elsõ olyan matematikus volt,
akinek bizonyítási igénye volt. Õ mondta ki, hogy a háromszög belsõ szögeinek összege
180º, megállapította, hogy egyenlõ szárú háromszögben az egyenlõ hosszúságú oldalakkal
szemben egyenlõ szögek vannak.

• A szinusztétel felfedezõje Abu Nasr (1000 körül) arab matematikus.
• Regiomontanus (1436–1476) német matematikus részletes trigonometriai bevezetést írt

a háromszögekrõl. Készített szinusztáblázatot is. A nagy humanista Vitéz János barátjaként
éveket töltött Esztergomban, majd Mátyás király udvarában a Corvina könyvtár rendezésével
foglalatoskodott.

• A legrégibb térképeket több mint 4000 évvel ezelõtt készítették. Snellius holland mérnök
a XVII. században kidolgozott olyan, a háromszögek adatainak meghatározására épülõ (tri-
gonometriai) módszert, amelynek alkalmazásával a térképek pontosabbá váltak.
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15. Egybevágósági transzformációk, alakzatok
egybevágósága. Szimmetria. Hasonlósági
transzformációk. Hasonló síkidomok kerülete, területe,
hasonló testek felszíne, térfogata. A hasonlóság
alkalmazásai síkgeometriai tételek bizonyításában

Vázlat:
I. Egybevágósági transzformációk

Eltolás, tengelyes tükrözés, pontra vonatkozó tükrözés, pont körüli elforgatás
II. Alakzatok egybevágósága (háromszögek, sokszögek)

III. Szimmetria
IV. Hasonlósági transzformáció:

Középpontos hasonlósági transzformáció
 V. Alakzatok hasonlósága (háromszögek, sokszögek)
VI. Transzformációk tulajdonságai

VII. Hasonló síkidomok kerülete, területe, hasonló testek felszíne, térfogata
VIII. Hasonlóság alkalmazása síkgeometriai tételek bizonyításában: háromszögekre vonatkozó té-

telekben
a) középvonalra vonatkozó tétel
b) súlyvonalakra vonatkozó tétel
c) szögfelezõtétel
d) magasságtétel
e) befogótétel

IX. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:
I. Transzformációk

DEFINÍCIÓ: Geometriai transzformációk azok a függvények, amelyek egy ponthalmazt ponthal-
mazra képeznek le. (Df = Rf = ponthalmaz)

DEFINÍCIÓ: A geometriai transzformációk közül a távolságtartó transzformációkat egybevágósági
transzformációknak nevezzük.
Távolságtartó leképezés: bármely két pont távolsága egyenlõ képeik távolságával.
Síkbeli egybevágósági transzformációk: tengelyes tükrözés, pontra vonatkozó (középpontos)
tükrözés, pont körüli elforgatás, eltolás, és ezek egymás utáni alkalmazása.

DEFINÍCIÓ: Tengelyes tükrözés: adott a sík egy t egyenese, ez a tengelyes tükrözés tengelye.
A t tengelyre vonatkozó tengelyes tükrözés a sík tetszõleges t-re nem illeszkedõ P pontjához
azt a P' pontot rendeli, amelyre fennáll, hogy a PP' szakasz felezõmerõlegese a t tengely.
A t egyenesen lévõ minden pont képe önmaga.

P
T

T

t

P

t

P’
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DEFINÍCIÓ: Középpontos tükrözés: adott a sík egy O pontja, a középpontos tükrözés középpontja.
Az O pontra vonatkozó középpontos tükrözés a sík egy tetszõleges O-tól különbözõ P
pontjához azt a P' pontot rendeli, amelyre az O pont a PP' szakasz felezõpontja. Az O pont
képe önmaga.

P O

P’

DEFINÍCIÓ: Pont körüli forgatás: adott a sík egy O pontja és egy α irányított szög. Az O pont
körüli a szögû, adott irányú forgatás a sík egy tetszõleges O-tól különbözõ P pontjához azt
a P' pontot rendeli, amelyre teljesül, hogy POP' szög irány és nagyság szerint megegyezik
a-val és OP = OP'. O pont képe önmaga.

a

O

Q’

PP’

Q

a > 0

pozitív irányú

forgatás

a < 0

negatív irányú

forgatás

DEFINÍCIÓ: Eltolás: adott egy v  vektor. A v  vektorral való eltolás a sík (tér) tetszõleges P pontjá-

hoz azt a P' pontot rendeli, amelyre 'PP v=
JJJJG

.

P

P’

v
�

II. Alakzatok egybevágósága (háromszögek, sokszögek)

DEFINÍCIÓ: Két alakzat egybevágó, ha van olyan egybevágósági transzformáció, amely az egyik
alakzatot a másikba viszi. Jele: A @ B.

TÉTEL: Két háromszög akkor és csak akkor egybevágó, ha:
• megfelelõ oldalaik hossza páronként egyenlõ,
• két-két oldaluk hossza páronként egyenlõ és az ezek által közbezárt szögek nagysága

egyenlõ,
• két-két oldaluk hossza páronként egyenlõ és e két-két oldal közül a hosszabbikkal szemközti

szögük nagysága egyenlõ,
• egy-egy oldaluk hossza páronként egyenlõ és két-két szögük páronként egyenlõ.

TÉTEL: Két sokszög akkor és csak akkor egybevágó, ha a következõ feltételek egyike teljesül:
• megfelelõ oldalaik hossza és a megfelelõ átlóik hossza páronként egyenlõ,
• megfelelõ oldalaik hossza páronként egyenlõ és megfelelõ szögeik páronként egyenlõk.

III. Szimmetria

DEFINÍCIÓ: Ha egy ponthalmazhoz található olyan t egyenes, amelyre vonatkozó tükörképe önma-
ga, akkor ez a ponthalmaz tengelyesen szimmetrikus, amelynek t a szimmetriatengelye.
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Tengelyesen szimmetrikus síkidomok: egyenlõ szárú háromszög, egyenlõ oldalú háromszög,
deltoid, húrtrapéz, rombusz, téglalap, négyzet, szabályos sokszögek, kör.

DEFINÍCIÓ: Ha egy ponthalmazhoz található olyan O pont, amelyre vonatkozó képe önmaga, ak-
kor ez a ponthalmaz középpontosan szimmetrikus, amelynek O a szimmetria-középpontja.
Középpontosan szimmetrikus síkidomok: paralelogramma, rombusz, téglalap, négyzet, páros
oldalszámú szabályos sokszögek, kör, ellipszis. Középpontosan szimmetrikus háromszög
nincs.

DEFINÍCIÓ: Ha egy ponthalmazhoz található egy olyan O pont és egy a (0 < a < 360º) szög úgy,
hogy az alakzat O pont körüli a szögû elforgatása önmaga, akkor ez a ponthalmaz forgás-
szimmetrikus.
Forgásszimmetrikus síkidomok: a középpontosan szimmetrikus síkidomok (a = 180º), sza-

bályos sokszögek ( )360º ,k
n

= ⋅a  kör.

IV. Hasonlósági transzformáció: középpontos hasonlóság

DEFINÍCIÓ: Középpontos hasonlósági transzformáció: adott egy O pont és egy l 0-tól különbözõ
valós szám. A tér minden P pontjához rendeljünk hozzá egy P’ pontot a következõképpen:
1. ha P = O, akkor P’ = P.
2. ha P π O, akkor P’ az OP egyenes azon pontja, amelyre OP' =ΩlΩ ◊ OP és ha l > 0, akkor

P’ az OP félegyenes pontja, ha l < 0, akkor O elválasztja egymástól P-t és P’-t.
Az O pont a középpontos hasonlósági transzformáció középpontja, l a középpontos ha-
sonlóság aránya.
Ha ΩlΩ> 1, akkor középpontos nagyításról, ha ΩlΩ< 1, akkor kicsinyítésrõl beszélünk, ha

pedig ΩlΩ= 1, akkor a transzformáció egybevágósági transzformáció.

DEFINÍCIÓ: Véges sok középpontos hasonlósági transzformáció és véges sok egybevágósági transz-
formáció egymás utáni végrehajtásával kapott transzformációkat hasonlósági transzformá-
ciónak nevezzük.

V. Alakzatok hasonlósága (háromszögek, sokszögek)

DEFINÍCIÓ: Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alak-
zatot a másikba viszi. Jele: A ~ B.

TÉTEL: Két háromszög akkor és csak akkor hasonló, ha:

1. megfelelõ oldalaik hosszának aránya páronként egyenlõ, azaz 
' ' '

a b c
a b c

= = = l ,

2. két-két oldalhosszuk aránya és az ezek által közbezárt szögek nagysága egyenlõ, pl.:

' '
a b
a b

= = l  és g = g',

3. két-két oldalhosszuk aránya egyenlõ, és e két-két oldal közül a hosszabbikkal szemközti

szögük nagysága egyenlõ, pl.: 
' '

a b
a b

= = l  és a = a' (ha a > b),

4. két-két szögük páronként egyenlõ, pl.: a = a' és b = b'.

TÉTEL: Két sokszög akkor és csak akkor hasonló, ha megfelelõ oldalhosszaik aránya és megfe-
lelõ szögeik nagysága páronként egyenlõ nagyságú.
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VI. Transzformációk fõbb tulajdonságai

Egybevágósági transzformációk Hasonlóság:

tengelyes
tükrözés

középpontos
tükrözés

pont körüli
elforgatás eltolás

középpontos
hasonlósági

transzformáció

fixpont
(képe önmaga)

a t egyenes
minden
pontja

egyetlen fix-
pont: O pont

egyetlen fix-
pont: O pont
(ha a π 0º)

nincs fix-
pontja

(ha 0v ≠ )

egyetlen fix-
pont: O pont

(ha l π 1)

fixegyenes
(minden pontja
fixpont)

a t egyenes
nincs

fixegyenes

nincs
fixegyenes
(ha a π 0º)

nincs
fixegyenes

nincs
fixegyenes
(ha l π 1)

invariáns egye-
nes
(képe önmaga, de
pontonként nem
fix)

a t-re merõ-
leges egye-

nesek

minden O-ra
illeszkedõ

egyenes in-
variáns

nincs invari-
áns egyenes
(ha a π 0º,
a π 180º)

az adott
vektorral

párhuzamos
egyenesek

minden O-ra
illeszkedõ

egyenes inva-
riáns

(ha l π 1)

VII. Hasonló síkidomok kerülete, területe, hasonló testek felszíne, térfogata

TÉTEL: Hasonló síkidomok kerületének aránya megegyezik a hasonlóság arányával, területének

aránya a hasonlóság arányának négyzetével: 1

2

k
k

= l  és 1 2

2
.

t
t

= l

TÉTEL: Hasonló testek felszínének aránya megegyezik a hasonlóság arányának négyzetével, térfo-

gatának aránya a hasonlóság arányának köbével: 1 2

2

A
A

= l  és 1 3

2
.

V
V

= l

VIII. Hasonlóság alkalmazása síkgeometriai tételek bizonyításában: három-
szögekre vonatkozó tételekben

TÉTEL: A háromszög középvonalaira vonatkozó tétel: A háromszög középvonala párhuzamos
a felezõpontokat nem tartalmazó oldalakkal, és feleolyan hosszú, mint a nem felezett oldal.

BIZONYÍTÁS: A tétel bizonyításakor az ABC és EFC háromszögek hasonlóságát használjuk.

A B

C

E F
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TÉTEL: A háromszög súlyvonalaira vonatkozó tétel: A háromszög súlyvonalai egy pontban
metszik egymást. Ez a pont mindhárom súlyvonalnak a csúcstól távolabbi harmadolópontja.

BIZONYÍTÁS: A tétel bizonyításakor az ASB és SFaFb háromszögek hasonlóságát használjuk.

A B

C

S

Fa

sa

Fb

sb

TÉTEL: Szögfelezõtétel: Egy háromszög belsõ szögfelezõje a szemközti oldalt a szomszédos ol-
dalak arányában osztja.

BIZONYÍTÁS: Az ABC háromszög A csúcsából induló belsõ szögfelezõ BC oldalt az S pontban
metszi.

A

B

C

D

S

c

b

b

a

a

2

a

2

a

2

a

2

A BA szakaszt hosszabbítsuk meg A-n túl és legyen AD = b. Ekkor AD = AC = b, ebbõl kö-
vetkezik, hogy az ACD háromszög egyenlõ szárú, a C-nél és a D-nél levõ belsõ szögek
egyenlõk, az A-nál levõ külsõ szög a.
Tudjuk, hogy a háromszög külsõ szöge egyenlõ a vele nem szomszédos belsõ szögek össze-

gével, tehát ACD¬ = ADC¬ = 
2
a .

Ekkor viszont BAS¬ = ADC¬ = 
2
a . Ebbõl következik, hogy az AS ª CD. A B csúcsnál levõ

szögre alkalmazva a párhuzamos szelõk tételét, kapjuk: CS DA AC
SB AB AB

= = .

TÉTEL: Magasságtétel: Derékszögû háromszögben az átfogóhoz tartozó magasság hossza mértani
közepe azon két szakasz hosszának, amelyekre a magasság az átfogót osztja.
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BIZONYÍTÁS: A tétel bizonyításakor a TBC és TAC háromszögek hasonlóságát használjuk.

2qm m p q m p q
p m

= ⇒ = ⋅ ⇒ = ⋅

A B

T

O

C

p

m ab

q

TÉTEL: Befogótétel: Derékszögû háromszög befogójának hossza mértani közepe az átfogó és a be-
fogó átfogóra esõ merõleges vetülete hosszának.

BIZONYÍTÁS: A tétel bizonyításakor a TBC és az ABC háromszögek hasonlóságát használjuk.

2a c a p c a p c
p a

= ⇒ = ⋅ ⇒ = ⋅

A B

T

O

C

p

m ab

q

VII. Alkalmazások:
• A kör kerületének és területének meghatározását végezhetjük a körbe, illetve a kör köré írt

szabályos sokszögek kerületének, illetve területének segítségével. Ez egyben π  értékének
közelítése.

• Az aranymetszés aránya = szabályos ötszög átlóinak osztásaránya.
• Hegyesszögek szögfüggvényeinek értelmezése derékszögû háromszögek hasonlóságán ala-

pul.
• Hasonlóságot használnak a térképészetben, az építészetben (tervek, makettek), az optikai

lencsék alkalmazásakor.
• Szakasz egyenlõ részekre osztása párhuzamos szelõk tételének segítségével történik.

Matematikatörténeti vonatkozások:

• Eukleidész, Kr. e. 300 körül élt görög matematikus Elemek címû mûvében meghatározta a ge-
ometriai alapszerkesztések axiómáit, az egybevágósággal és hasonlósággal kapcsolatos téte-
leket. Pl. hasonló körszeletek területei úgy aránylanak egymáshoz, mint húrjaik négyzetei.

• Thalész a Krisztus elõtti VI. században élt az ókori Görögországban, kiszámolta az egyipto-
mi piramisok magasságát a hasonlóság segítségével:
Egy földbe szúrt bot segítségével mérte a piramisok magasságát: amikor a bot és az árnyéka
egyenlõ hosszú, akkor a piramis árnyéka is egyenlõ a piramis magasságával, így elegendõ
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csak a piramis árnyékát és alapját megmérni, mert ezekbõl már számolható a piramis magas-
sága:

' ' 1
' ' ' ' ' '

AC AB AC A C
A C A B AB A B

= ⇒ = =

A'B' = A'C' = y + z

A B

C

x = bot

x = árnyék
árnyék

45°

B’A’

C’

z y

• Az egybevágóság jelét (@) Leibniz (1646–1716) német matematikus vezette be.
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16. Konvex sokszögek tulajdonságai.
Szabályos sokszögek. Gráfok

Vázlat:
I. Konvex sokszögek tulajdonságai

II. Szabályos sokszögek
III. Gráfok
IV. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás

I. Konvex sokszögek tulajdonságai

DEFINÍCIÓ: Egy sokszög konvex, ha bármely két belsõ pontját összekötõ szakasz minden pontja
a sokszög belsõ pontja.

TÉTEL: Egy n oldalú konvex sokszög átlóinak száma: ( 3).
2

n n⋅ −

BIZONYÍTÁS: Az n oldalú, vagyis n csúcsú konvex sokszög minden csúcsából n - 3 darab átló
húzható (nem húzható átló a két szomszédos csúcsba és saját magába). Így n csúcsból
n ◊ (n - 3) átló húzható. Ekkor viszont minden átlót kétszer számoltunk, mert figyelembe

vettük a kezdõpontjánál és a végpontjánál is. Ezért az összes átló száma ( 3).
2

n n⋅ −

TÉTEL: Egy n oldalú konvex sokszög belsõ szögeinek összege (n - 2) ◊ 180º.

BIZONYÍTÁS: A konvex sokszög egy csúcsából n - 3 átló húzható (nem húzható átló a két szom-
szédos csúcsba és saját magába). Ez az n - 3 darab átló n - 2 darab háromszögre bontja
a sokszöget. Egy háromszög belsõ szögeinek összege 180º, így az n - 2 darab háromszög
belsõ szögeinek összege (n - 2) ◊ 180º, ami éppen a sokszög belsõ szögeinek összegét adja.

DEFINÍCIÓ: A konvex sokszög belsõ szögeinek mellékszögeit a sokszög külsõ szögeinek nevez-
zük.



MATEMATIKA EMELT SZINTÛ SZÓBELI ÉRETTSÉGI TÉMAKÖRÖK, 2026 MOZAIK KIADÓ

96

TÉTEL: Egy n oldalú konvex sokszög külsõ szögeinek összege 360º.

BIZONYÍTÁS: A konvex sokszög egy belsõ szögének és a hozzá tartozó külsõ szögnek az összege
180º, mert mellékszögpárt alkotnak. Így az n csúcsnál levõ belsõ szög-külsõ szög párok ösz-
szege n ◊ 180º. Ebbõl levonva a belsõ szögek összegét, megkapjuk a külsõ szögek összegét:
n ◊ 180º - (n - 2) ◊ 180º = (n - (n - 2)) ◊ 180º = 2 ◊ 180º = 360º.

II. Szabályos sokszögek

DEFINÍCIÓ: Egy sokszög szabályos, ha minden oldala egyenlõ hosszú és minden szöge egyenlõ.

TÉTEL: Egy n oldalú szabályos sokszög egy belsõ szöge ( 2) 180º .n
n

− ⋅

BIZONYÍTÁS: A konvex sokszög belsõ szögeinek összege (n - 2) ◊ 180º, ami éppen n darab
egyenlõ szög összege, mert a belsõ szögek egyenlõk. Így egy belsõ szög nagysága ennek az

n-ed része, azaz: ( 2) 180º .n
n

− ⋅

Szimmetriák szabályos sokszögekben:

Tengelyes szimmetria: egy szabályos n-szögnek n darab szimmetriatengelye van. Különbséget
kell tennünk a szimmetriatengelyek milyensége között: szimmetriatengely lehet oldalfelezõ merõ-
leges, illetve szögfelezõ.

Páros n esetén ezek elkülönülnek: a tengelyek fele, azaz 
2
n  darab tengely a szemköztes oldalak

oldalfelezõ merõlegese; a tengelyek másik fele, azaz 
2
n  darab tengely a szemközti csúcsok szögfe-

lezõ egyenese.

A

D

B A

F C

E

B A

F

B A B
C

D

E

FG

H

I

J

E

C

D

H

G

DC

Páratlan n esetén bármely szimmetriatengely az egyik oldal oldalfelezõ merõlegese és a szemköztes
szög szögfelezõje is egyben.

A

C

B A

CE

B A

F

B A B

C

D

E

F

G

H

I

E

C

D

G

D

A szimmetriatengelyek egy pontban metszik egymást, szabályos sokszögek esetében ez a pont a sok-
szög köré írható és a sokszögbe írható kör középpontja is. Mindezekbõl következik, hogy a szabá-
lyos sokszögek húrsokszögek és érintõsokszögek is egyben. A körök középpontjából a szabályos
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n-szög n darab egyenlõ szárú háromszögre bontható, amelynek alapja a sokszög oldala, szára
a sokszög köré írható kör sugara, alaphoz tartozó magassága a sokszögbe írható kör sugara.

A

O

C

B A

O

CE

B

D

A

D

B A

F C

E

B A

F

B

E

C

D

H

G

DC

O

Középpontos szimmetria: a páros oldalszámú szabályos sokszögek középpontosan szimmetriku-
sak. A szimmetria-középpont két szimmetriatengely metszéspontja.

Forgásszimmetria: minden szabályos sokszög forgásszimmetrikus. A forgatás középpontja a sok-
szög középpontja (a szimmetriatengelyek metszéspontja, páros oldalszám esetén a középpontos

szimmetria középpontja is), a forgatás szöge pedig lehet 360º ,k
n

⋅  ahol k ŒZ.

TÉTEL: Egy n oldalú szabályos sokszög területe: 
( )2 360ºsin

,
2

R
nT n

⋅
= ⋅  ahol R a sokszög köré írt

kör sugara.

TÉTEL: Egy n oldalú szabályos sokszög kerülete: ( )180º2 sin ,K n R
n

= ⋅ ⋅ ⋅  ahol R a sokszög köré

írt kör sugara.

TÉTEL: Egy n oldalú szabályos sokszög területe: ,
2

r KT ⋅=  ahol r a sokszögbe írt kör sugara,

K a kerülete, ebbõl ,
2

r n aT ⋅ ⋅=  ahol r a sokszögbe írt kör sugara, a pedig az oldalhossza.

A

F

B

E

C

D

H

G

O

r R

a

III. Gráfok
A gráfok nagyon jól szemléltetik egy halmaz elemei közti kapcsolatokat. Gráfokkal szemléltethe-
tõk pl. egy társaság ismeretségi viszonyai, vagy bármilyen hálózat kapcsolódási viszonyai.

DEFINÍCIÓ: A gráf pontokból és vonalakból áll. Minden vonal két (nem feltétlenül különbözõ)
pontot köt össze. A pontok a gráf pontjai, a vonalak a gráf élei.

DEFINÍCIÓ: A gráf olyan pontját, amelybõl nem vezet él, izolált pontnak nevezzük.
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DEFINÍCIÓ: A gráfokban elõfordulhat olyan él is, melynek mindkét végpontja ugyanaz a pont, az
ilyen él neve hurokél.

DEFINÍCIÓ: Két csúcs között több élt is húzhatunk, ezek a többszörös élek.

gráf

hurokéltöbbszörös él

izolált pont

DEFINÍCIÓ: Egy gráfot egyszerû gráfnak nevezünk, ha nincs benne sem hurokél, sem többszörös
él.

nem egyszerû gráfegyszerû gráf

DEFINÍCIÓ: Egy gráf összefüggõ gráf, ha bármely pontjából bármely másik pontjába élek mentén
el lehet jutni.

összefüggõ gráf nem összefüggõ gráf

DEFINÍCIÓ: A séta a gráf csúcsainak és éleinek olyan sorozata, amelyben egy-egy csúcs vagy él
akár többször is szerepelhet. Körséta az olyan séta, amelyben az élsorozat kezdõ és vég-
pontja egybeesik.

DEFINÍCIÓ: Az út a gráf éleinek olyan egymáshoz csatlakózó sorozata, amelyben a csúcsok nem
ismétlõdnek.

DEFINÍCIÓ: A kör a gráf éleinek olyan egymáshoz csatlakózó sorozata, amelyben a kezdõ és a
végpont azonos, a többi csúcs nem ismétlõdik.

séta körséta út kör

ABDCA ABDC BCDBABDCB

A A A A

B B B B

D D D D

C C C C

DEFINÍCIÓ: Két gráfot izomorfnak nevezünk, ha pontjaik és éleik kölcsönösen egyértelmûen és
illeszkedéstartóan megfeleltethetõk egymásnak.
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és

DEFINÍCIÓ: Egy egyszerû gráf komplementer gráfja az az egyszerû gráf, amely a gráfot a pontjai-
ból álló teljes gráffá egészíti ki.
Azaz egy egyszerû gráf komplementer gráfjának csúcsai közt pontosan akkor vezet él, ha az
eredeti gráf csúcsai között nem volt él.

komplementer gráf

Az ábrákon a kékkel rajzolt gráf komplementer gráfja a pirossal rajzolt gráf, és fordítva is
igaz: a pirossal rajzolt gráf komplementer gráfja a kékkel rajzolt gráf.

DEFINÍCIÓ: Egy gráf egy pontjához illeszkedõ élvégek számát a pont fokszámának (fokának) ne-
vezzük.

TÉTEL: A legalább 2 csúcsú egyszerû gráfban van 2 azonos fokú csúcs.

0

1

2

3

3

3

BIZONYÍTÁS: Az n (n ≥ 2) csúcsú gráf minden pontjának fokszáma legfeljebb n - 1, vagyis a csú-
csok fokszáma 0, 1, 2, ..., n - 1 lehet. A 0 és az n - 1 fokszámok azonban kizárják egymást,
mert ha a gráf egyik csúcsa 0 fokszámú, akkor egy másik csúcs nem lehet n - 1 fokszámú, és
fordítva. Így az n csúcsnak legfeljebb n - 1 db különbözõ fokszáma lehet, vagyis a skatulya-
elv alapján a fokszámok között biztosan van két egyenlõ.

TÉTEL: A pontok fokszámösszege az élek számának kétszerese.

TÉTEL: Minden gráfban a pontok fokszámának összege páros szám.

TÉTEL: A páratlan fokszámú pontok halmaza páros (hiszen a páros fokszámú pontok fokszámának
az összege páros, és ehhez hozzáadva a páratlan fokszámú pontok összegét, páros számot
kell kapnunk).

DEFINÍCIÓ: Ha egy gráfnak n pontja van (n ŒZ+) és mindegyik pontból pontosan egy él vezet
a többi ponthoz, akkor a gráfot n pontú teljes gráfnak nevezzük.

TÉTEL: n pontú teljes gráf éleinek a száma: 
( 1)

.
2

n n⋅ −
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TÉTEL: n pontú teljes gráfban a fokszámok összege: n ◊ (n - 1).

1 pontú
teljes gráf

2 pontú
teljes gráf

3 pontú
teljes gráf

4 pontú
teljes gráf

5 pontú
teljes gráf

6 pontú
teljes gráf

A A
B

A B

C

A
B

C

D

A
B

C

D E

A
B

C

D E

F

DEFINÍCIÓ: A fagráf olyan összefüggõ gráf, amely nem tartalmaz kört.

TÉTEL: A fagráf maximális körmentes gráf (ha bármely két pontját összekötjük, amelyek között
nem volt él, akkor a gráf már tartalmaz kört).

TÉTEL: A fagráf minimális összefüggõ gráf (ha bármely élet elhagyjuk, akkor a gráf már nem ösz-
szefüggõ).

TÉTEL: A fagráf bármely két csúcsát egyetlen út köti össze

TÉTEL: Az n csúcsú fagráfnak n - 1 éle van.

1 pontú
fagráf

2 pontú
fagráf

3 pontú
fagráf

4 pontú
fagráf

5 pontú
fagráf

6 pontú
fagráf

A A
B

B C

A A

B C

D

A

B
C

D
E

A

B

F

C

D
E

TÉTEL: Minden egynél több csúcsú fagráfnak van legalább 2 elsõfokú csúcsa.

IV. Alkalmazások
Sokszögek:

• Görbült felületekkel határolt testek számítógépes ábrázolásakor a test felületét sokszögla-
pokból álló felületekkel közelítik meg.

• A kör kerületének és területének meghatározását végezhetjük a körbe, illetve a kör köré írt
szabályos sokszögek kerületének, illetve területének segítségével. Ez egyben a p értékének
közelítése.

• A kristályszerkezetekben jellemzõen elõfordulnak szabályos sokszögek (grafitban szabályos
hatszög).

• Az aranymetszés aránya egyenlõ a szabályos ötszög átlóinak osztásarányával.
• Az építészetben a szimmetriákat, a szabályos sokszögeket gyakran alkalmazzák statisztikai

és esztétikai szempontból.

Gráfok:
• Minimális költségû hálózatok (elektromos hálózatok, közlekedési útvonalak) tervezése
• Szerencsejátékok nyerési esélyeinek meghatározása
• Gráfokat jól lehet alkalmazni szociológiai, pszichológiai vizsgálatokban a kapcsolati rend-

szerek ábrázolásához
• Informatikában algoritmusok tervezése
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Matematikatörténeti vonatkozások:

• Az ókorban már ismerték a szabályos háromszög és a szabályos négyszög (négyzet) szerkesz-
tési módszerét. Hippaszosz (Kr. e. V. században) kidolgozta a szabályos ötszög szerkesztési
módját.

• Gauss 19 évesen (1796-ban) kidolgozta a szabályos sokszögek szerkesztési algoritmusát, a sza-
bályos 17-szög szerkesztési eljárását meg is mutatta.

• A gráfokkal elõször Euler foglalkozott 1736-ban a königsbergi hidak néven ismertté vált
feladatában (a gráf minden élén pontosan egyszer megyünk végig).

• 1835-ben Hamilton ír matematikus értekezést írt a gráfokról (Hamilton-kör néven vált is-
mertté: a gráf minden csúcsát pontosan egyszer érintjük).

• Kõnig Dénes magyar matematikus írta le elõször tudományos alapokra helyezve a gráfel-
méletet 1936-ban (A véges és a végtelen gráfok elmélete címû mûvében).
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17. A kör és részei. Kerületi szög, középponti szög,
látószög. Húrnégyszögek, érintõnégyszögek

Vázlat:
I. Kör és részei (kör, körlap, körcikk, körgyûrû, körgyûrûcikk, körszelet)

II. Kerületi, középponti szög, látószög, látókörív, kerületi és középponti szögek tétele, radián
III. Húrnégyszög: definíció, tétel, terület (Heron-képlet)
IV. Érintõnégyszög: definíció, tétel, terület
V. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás

I. Kör és részei

DEFINÍCIÓ: Azoknak a pontoknak a halmaza a síkon, amelyeknek a sík egy adott O pontjától adott
r távolságra (adott r távolságnál nem nagyobb / adott r távolságnál kisebb) vannak, O kö-
zéppontú, r sugarú körnek (zárt körlapnak / nyílt körlapnak) nevezzük.
A kör területe t = r2p, kerülete k = 2rp.

DEFINÍCIÓ: A körvonal két különbözõ pontját összekötõ szakaszt húrnak nevezzük.

DEFINÍCIÓ: A húr egyenesét szelõnek, a középponton áthaladó húrt átmérõnek nevezzük. Az át-
mérõ a kör leghosszabb húrja, hossza: 2r.

HÚR

ÁTMÉRÕ

SZELÕ

DEFINÍCIÓ: A kör érintõje a kör síkjának olyan egyenese, amelynek pontosan egy közös pontja
van a körrel.

TÉTEL: A kör minden egyes pontjába egyetlen érintõ húzható és ez az érintõ merõleges az érintési
pontba húzott sugárra.

TÉTEL: A körhöz külsõ pontból húzott érintõszakaszok egyenlõk.

BIZONYÍTÁS: Egy adott O középpontú körhöz adott külsõ P pontból húzzuk meg a két érintõt (e-t
és f-et), az érintési pontok E és F. Tekintsük az OEP, illetve az FOP háromszögeket. A két
háromszög egybevágó, mert két-két oldaluk és a nagyobbik oldallal szemköztes szögük
egyenlõ (OE = OF = r, OP mindkét háromszög oldala, OEP¬ = OFP¬ = 90º). Az egybevá-
góságból következik, hogy a háromszögek harmadik oldala is egyenlõ, azaz PE = PF, ez azt
jelenti, hogy az érintõszakaszok egyenlõ hosszúak.
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O

Ff

e

r

r
P

E

TÉTEL: A kör
– a középpontján áthaladó tetszõleges egyenesre nézve tengelyesen szimmetrikus
– a középpontjára nézve középpontosan szimmetrikus
– a középpontja körüli forgatásra forgatásszimmetrikus

DEFINÍCIÓ: A körlapnak két sugár közé esõ darabja a körcikk.

DEFINÍCIÓ: Egy szelõ által a körlapból lemetszett rész a körszelet.

DEFINÍCIÓ: Két kör koncentrikus, ha középpontjaik egybeesnek.

DEFINÍCIÓ: Két koncentrikus körvonal közé esõ rész a körgyûrû.

DEFINÍCIÓ: Ha egy szög csúcsa a kör középpontja, akkor a szöget középponti szögnek nevezzük.

koncentrikus (egyközepû) körök

KÖRGYÛRÛ

KÖRSZELET

KÖRCIKK

KÖRÍV

TÉTEL: Egy adott körben két középponti szöghöz tartozó ívek hosszának aránya, valamint a kör-
cikkek területének aránya megegyezik a középponti szögek arányával.

i t
i t

= =a a

b b

a
b

a b

r
r

ia ib

TÉTEL: Egy körben az α középponti szögû körcikk területe:

2

2
º º

360º 360º
t rt

r
= ⇒ = ⋅a

a
a p a

p
,  illetve  

2

2 2 2
t rt

r
= ⇒ =
� �

a
a

a a
pp

,

a hozzátartozó ív hossza:

º 2 º
2 360º 360º
i ri
r

= ⇒ = ⋅a
a

a p a
p

,  illetve  
2 2
i

i r
r

= ⇒ =
� �a

a
a a

p p
.
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TÉTEL: Egy körben az a középponti szögû körcikk területe az ívhosszal kifejezve 
2

r i
t

⋅= a
a .

TÉTEL: Az R és r határoló körgyûrû területe t = R2p - r2p.

TÉTEL: A körszelet területe 
2 2 2sin ( sin )
2 2 2

r r rt ⋅= − = −a a a a
� �

.

II. Középponti és kerületi szögek

DEFINÍCIÓ: Ha egy szög csúcsa egy adott kör középpontja, akkor a szöget középponti szögnek
nevezzük, a szög szárai két sugárra illeszkednek.

DEFINÍCIÓ: Ha egy szög csúcsa egy adott körvonal egy pontja és szárai a kör húrjai, akkor a szöget
kerületi szögnek nevezzük.
Speciális: érintõszárú kerületi szög: egyik szára a kör húrja, másik szára a kör érintõje a húr
egyik végpontjában.
A középponti szögek kapcsolatát egy körön belül már tárgyaltuk.

TÉTEL: Középponti és kerületi szögek tétele: Adott körben adott ívhez tartozó bármely kerületi
szög nagysága fele az ugyanazon ívhez tartozó középponti szög nagyságának.

BIZONYÍTÁS: a középponti és a kerületi szögek helyzetének 4 esete van:
1. A középponti és a kerületi szög egy szára egy egyenesbe esik.

O

a

b

A
B

C

BOC háromszög egyenlõ szárú OB = OC = r  fi  OCB¬ = CBO¬ = a  fi  b = OBC há-
romszög külsõ szöge, ami egyenlõ a nem mellette lévõ két belsõ szög összegével: b = 2a

fi   
2

= ba .

2. A középponti szög csúcsa a kerületi szög belsejébe esik: Húzzuk be az OC-re illeszkedõ
átmérõt, mely az a szöget a1 és a2, b szöget b1 és b2 részekre osztja.

O

b

A

B

a1

b1

a2

b2

D

C

a

A BD, illetve AD ívekhez tartozó kerületi és középponti szögek elhelyezkedése az 1. eset-
nek megfelelõ, tehát b1 = 2a1 és b2 = 2a2. Ebbõl következik, hogy

b = b1 + b2 = 2a1 + 2a2 = 2(a1 + a2) = 2a  fi  
2

= ba .
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3. A középponti szög csúcsa a kerületi szög szögtartományán kívül esik: Húzzuk be az OC-re
illeszkedõ átmérõt. Az a = a1 - a2 és b = b1 - b2 összefüggések írhatók fel a DB és a DA
ívekhez tartozó kerületi és középponti szögek elhelyezkedésére az 1. esetnek megfelelõ,
tehát b1 = 2a1 és b2 = 2a2. Ebbõl következik, hogy

b = b1 - b2 = 2a1 - 2a2 = 2(a1 - a2) = 2a  fi  
2

= ba .

O

A

B

D

a
a1

a2

b

b1

b2

C

4. Ha a kerületi szög érintõszárú, akkor 3 eset van:
Jelölje a az AB íven nyugvó érintõszárú kerületi szöget.

O

A

B
a - 90º

O

A B

a a

a T

O

A

B

180º

a - 90º

a < 90º a = 90º 90º< a

a) b) c)

a) 0º < a < 90º. Ekkor

BAO¬ = ABO¬ = 90º - a  fi  AOB¬ = 2a = b  fi  
2

= ba .

b) a = 90º  fi  b = 180º  fi  
2

= ba .

c) 90º < a < 180º. Ekkor
BAO¬ = ABO¬ = a - 90º  fi  AOB¬ = 180º - 2(a - 90º) = 360º - 2a  fi

  b = 2a fi  
2

= ba .

TÉTEL: Kerületi szögek tétele: adott kör adott ívéhez tartozó kerületi szögek egyenlõ nagyságúak
vagy adott kör adott AB húrja az AB ív belsõ pontjaiból ugyanakkora szögben látszik.

TÉTEL: Általánosan: egyenlõ sugarú körökben az azonos hosszúságú ívekhez tartozó kerületi szö-
gek egyenlõ nagyságúak.

TÉTEL: Ebbõl megfogalmazható Thalész tétele és annak megfordítása: Azon pontok halmaza
síkon, amelyekbõl a sík egy AB szakasza derékszögben látszik, az AB átmérõjû körvonal, ki-
véve az A és a B pontokat.

DEFINÍCIÓ: Tekintsünk a síkon egy AB szakaszt és egy P pontot. Legyen APB¬ = a. Ekkor azt
mondhatjuk, hogy a P pontból az AB szakasz a szög alatt látszik. Az a szöget látószögnek
nevezzük.
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DEFINÍCIÓ: Azon pontok halmaza, amelyekbõl a sík egy AB szakasza adott a (0º < a < 180º) szög
alatt látszik, két, az AB egyenesre szimmetrikusan elhelyezhetõ körív, melynek neve az AB
szakasz a szögû látóköríve. A szakasz két végpontja nem tartozik a ponthalmazba.

O1

A B

a

O2

A B

O2

a

O1

A B
O

a

0 < < 90ºa

a = 90º

90º< < 180ºa

III. Húrnégyszög

DEFINÍCIÓ: Azokat a négyszögeket, amelyeknek van köré írható körük, húrnégyszögeknek nevez-
zük. Ezzel ekvivalens: a húrnégyszög olyan négyszög, amelynek oldalai ugyanannak a kör-
nek a húrjai.

TÉTEL: Ha egy négyszög húrnégyszög, akkor szemközti szögeinek összege 180º.

BIZONYÍTÁS: Vegyük fel egy ABCD húrnégyszöget, és a köré írt kört. Legyen a négyszögben
DAB¬ = a, BCD¬ = g.

O 2a

g

2g
a

A

B

C

D

Ekkor a a C csúcsot tartalmazó BD ívhez, g pedig az A csúcsot tartalmazó DB ívhez tartozó
kerületi szög. A kerületi és középponti szögek tételébõl következõen az ugyanezeken az
ívekhez tartozó középponti szögek nagysága 2a, illetve 2g.
Ezek összegérõl tudjuk, hogy 2a + 2g = 360º. Tehát a + g = 180º. Mivel a négyszög belsõ
szögeinek összege 360º, ezért a másik két szemközti szög összege is 180º.

TÉTEL: Ha egy négyszög szemközti szögeinek összege 180º, akkor az húrnégyszög.

BIZONYÍTÁS: indirekt
Tegyük fel, hogy a szemközti szögeinek összege 180°, és a négyszög nem húrnégyszög. Tehát
az egyik csúcs (C) nem illeszkedik a másik három által meghatározott körre. Legyen P a DC
egyenesének és a körnek a metszéspontja.
Legyen DAB¬ = a, a feltétel szerint BCD¬ = 180º - a  fi BCP¬ = a.
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A

B

C

D

P

Ekkor az ABPD négyszög húrnégyszög, amelyrõl már beláttuk, hogy szemközti szögeinek
összege 180º, tehát DPB¬ = 180º - a. Ebbõl viszont az következik, hogy a BPC háromszög
egyik szöge (BCP¬) a, egy másik (BPC¬) pedig 180º - a. Ezek összege a harmadik szög
nélkül is 180º, ami ellentmond a belsõ szögek összegére vonatkozó tételnek. Mivel helyesen
következtettünk, csak a kiindulási feltételben lehet a hiba, tehát nem igaz, hogy C nincs a kö-
rön fi C illeszkedik a körre. Ez viszont azt jelenti, hogy ABCD mindegyik csúcsa ugyanazon
körön van  fi  ABCD húrnégyszög.

TÉTEL: A húrnégyszögek tétele: egy négyszög akkor és csak akkor húrnégyszög, ha szemközti
szögeinek összege 180º.

TÉTEL: A nevezetes négyszögek közül biztosan húrnégyszög a szimmetrikus trapéz (húrtrapéz),
a téglalap és a négyzet.

TÉTEL: A paralelogramma akkor és csak akkor húrnégyszög, ha téglalap.

TÉTEL: A húrnégyszög területe kifejezhetõ a négyszög kerületével és az oldalakkal: Ha 
2
ks = ,

akkor ( )( )( )( )t s a s b s c s d= − − − − . Ez a Heron-képlet húrnégyszögekre.

IV. Érintõnégyszög

DEFINÍCIÓ: Azokat a négyszögeket, amelyeknek van beírt körük, érintõnégyszögeknek nevezzük.
Ezzel ekvivalens: az érintõ négyszög olyan négyszög, amelynek az oldalai ugyanannak
a körnek érintõi.

TÉTEL: Ha egy konvex négyszög érintõnégyszög, akkor szemközti oldalainak összege egyenlõ.

A x

x

y

y

z

z

u

u

B

C

D

BIZONYÍTÁS: Az ábrán azonos színnel jelölt szakaszok egyenlõk, mert körhöz külsõ pontból hú-
zott érintõszakaszok egyenlõk.
Így AB + CD = x + y + u + v, illetve BC + DA = y + z + u + x. Mivel az összeadás tagjai fel-
cserélhetõek, a két jobb oldalon álló kifejezések egyenlõk, ebbõl viszont következik, hogy
a bal oldalak is egyenlõk: AB + CD = BC + DA. Ezzel bebizonyítottuk az állítást.

TÉTEL: Ha egy konvex négyszög szemközti oldalainak összege egyenlõ, akkor az érintõnégyszög.
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TÉTEL: Az érintõnégyszögek tétele: Egy konvex négyszög akkor és csak akkor érintõnégyszög,
ha szemközti oldalainak összege egyenlõ.

TÉTEL: A nevezetes négyszögek közül biztosan érintõnégyszög a konvex deltoid, így a rombusz
és a négyzet.

TÉTEL: A paralelogramma akkor és csak akkor érintõnégyszög, ha rombusz.

TÉTEL: Érintõnégyszög területe kifejezhetõ a négyszög kerületével, és a beírt kör sugarával:

2
k rt s r⋅= = ⋅ .

V. Alkalmazások:
• A körhöz húzott érintõ- és szelõszakaszok tételével feloszthatunk egy szakaszt az aranymet-

szésnek megfelelõen (a nagyobb rész és az egésznek az aránya egyenlõ a kisebb rész és a na-
gyobb rész arányával).

a

xa – x

     
A B

O

a

a+x

C
a

2

x

• Körrel kapcsolatos ismeretek: körmozgás, forgómozgás, építészet (boltívek, román és góti-
kus stílusú ablakok tervezése)

• Látószög: háromszög szerkesztésében (pl.: adott a, α, ma esetén háromszög szerkesztése),
terepfeladatokban, csillagászatban, színházi nézõtéren a legjobb ülõhely kiválasztása, labda-
rúgásban és kézilabdában a legjobb szögbõl való kapuralövés helyének meghatározása

• A kör területe, kerülete: térgeometriai számítások
• Csonkakúp, illetve csonkagúla beírt gömbjének sugár meghatározása megfelelõ síkmetszettel

(pl. érintõtrapéz)
• Csonkakúp köré írt gömb sugarának meghatározása

Matematikatörténeti vonatkozások:

• A kör és részei közötti viszonyok feltárását már az ókori gondolkodóknál megtalálhatjuk.
Számukra a kör a tökéletességet szimbolizálta, isteni eredetûnek tartották. Ma a matematika
számos területe támaszkodik az idõk folyamán felfedezett összefüggésekre.

• Eukleidész Kr. e. 300 körül élt görög matematikus Elemek címû mûvében meghatározta
a geometriai alapszekesztések axiómáit, a kerületi és a középponti szögekkel kapcsolatos té-
teleket, a hasonlósággal kapcsolatos tételeket. Pl. hasonló körszeletek területei úgy arányla-
nak egymáshoz, mint húrjaik négyzetei.

• Heron a Krisztus elõtti I. században élt görög matematikus, síkidomok területének és testek
térfogatának kiszámításával is foglalkozott. A háromszög területét számító Heron-képlet,
amelynek geometriai bizonyítását adta, valószínûleg Arkhimédész felfedezése.

• Leonardo da Vinci (1452–1519) olasz festõ, matematikus számos festményében használta
az aranymetszést, pl. az egyik leghíresebb festményén, a Mona Lisá-n több mint száz arany-
metszéses arány található.
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18. Vektorok, vektormûveletek. Vektorfelbontási tétel.
Vektorok koordinátái. Skaláris szorzat

Vázlat:
I. Vektor, vektor hossza, vektorok egyenlõsége, párhuzamossága

II. Vektormûveletek, tulajdonságaik
III. Vektorok felbontása
IV. Vektorok koordinátái
V. Skaláris szorzat

VI. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Vektor
Az eltolás mint egybevágósági transzformáció megadható az eltolás irányával és nagyságával, va-
gyis egy vektorral.

Az irányított szakaszt vektornak nevezzük. Jel: =
JJJG

,AB v  A: kezdõpont, B: végpont (ez szemléletes
megoldás, a vektor alapfogalom, nem definiáljuk).

A B

v
�

DEFINÍCIÓ: A vektor abszolút értéke a vektort meghatározó irányított szakasz hossza. Jele: AB
JJJG

.

DEFINÍCIÓ: Az a vektor, amelynek abszolút értéke nulla, a nullvektor. Jele: 0 . A nullvektor irá-
nya tetszõleges, tehát minden vektorra merõleges, és minden vektorral párhuzamos.

DEFINÍCIÓ: Két vektor egyirányú, ha a két vektor párhuzamos, és azonos irányba mutat.

DEFINÍCIÓ: Két vektor ellentétes irányú, ha a két vektor párhuzamos, de ellentétes irányba mutat.

a
�

a
�

b
�

b
�

a
�

b
�

DEFINÍCIÓ: Két vektor egyenlõ, ha egyirányúak és abszolút értékük egyenlõ.

DEFINÍCIÓ: Két vektor egymás ellentettje, ha ellentétes irányúak és abszolút értékük egyenlõ.

II. Vektormûveletek

DEFINÍCIÓ: Az a  és b  vektorok összege annak az eltolásnak a vektora, amellyel helyettesíthetõ

az a  vektorral és a b  vektorral történõ eltolások egymásutánja. Jele: a b+ .
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háromszögszabály paralelogrammaszabály

+

a
�

a
�

b
�

b
�

+a
� b

�a
�

a
�

b
�

b
�

Ellentett vektorok összege a nullvektor: ( ) 0a a+ − = .

A vektorösszeadás tulajdonságai:

1. kommutatív: a b b a+ = +  (összeg nem függ az összeadandók sorrendjétõl).

2. asszociatív: ( ) ( )a b c a b c+ + = + +  (az összeg független az összeadandók csoportosításától).

DEFINÍCIÓ: Az a b−  különbségvektor az a vektor, amelyhez a b  vektort adva az a  vektort kap-

juk. Jele: a b− .

–a
�

b
�

a
�

b
�

Az a b−  és a b a−  egymás ellentettjei.

DEFINÍCIÓ: Egy nullvektortól különbözõ a  vektor tetszõleges l valós számmal (skalárral) vett

szorzata egy olyan vektor, amelynek abszolút értéke a⋅l  és l > 0 esetén a -val egyirá-

nyú, l < 0 esetén a -val ellentétes irányú.
A nullvektort bármilyen valós számmal szorozva nullvektort kapunk.

A skalárral vett szorzás tulajdonságai:

1. disztributív: 
( )

( )

a a a

a b a b

⋅ + ⋅ = + ⋅⎧
⎨ ⋅ + ⋅ = ⋅ +⎩

a b a b
a a a

2. asszociatív: ( ) ( )a a⋅ ⋅ = ⋅ ⋅a b a b

III. Vektorok felbontása

DEFINÍCIÓ: Tetszõleges a , b  vektorokkal és a, b valós számokkal képzett v a b= ⋅ + ⋅a b  vektort

az a  és b  vektorok lineáris kombinációjának nevezzük.

TÉTEL: Ha a  és b  nullvektortól különbözõ párhuzamos vektorok, akkor pontosan egy olyan a va-

lós szám létezik, amelyre b a= ⋅a .

TÉTEL: Ha a  és b  nullvektortól különbözõ, nem párhuzamos vektorok, akkor a velük egy síkban

levõ minden c  vektor egyértelmûen elõáll a  és b  vektorok lineáris kombinációjaként, azaz

c a b= ⋅ + ⋅a b  alakban, ahol a és b egyértelmûen meghatározott valós számok. Ez azt je-

lenti, hogy c  egyértelmûen felbontható a -val és b -vel párhuzamos összetevõkre.

DEFINÍCIÓ: A lineáris kombinációban szereplõ a  és b  vektorokat bázisvektoroknak nevezzük.
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IV. Vektorok koordinátái

DEFINÍCIÓ: A síkbeli derékszögû (x; y) koordináta-rendszer bázisvektorai az origóból az (1; 0)
pontba mutató i  és a (0; 1) pontba mutató j  egységvektorok.

DEFINÍCIÓ: A derékszögû koordináta-rendszerben az A(a1, a2) pont helyvektora az origóból az
A pontba mutató vektor.

x

y

A

1

0 1i

j

a
�

a1
.i

a2
.j

DEFINÍCIÓ: A derékszögû koordináta-rendszerben egy vektor koordinátáinak nevezzük az origó
kezdõpontú, vele egyenlõ helyvektor végpontjának koordinátáit. Jele: 1 2( , )a a a .

TÉTEL: (Az elõbbiek alapján) a koordinátasík összes v  vektora egyértelmûen elõáll i  és j  vekto-

rok lineáris kombinációjaként 1 2v v i v j= ⋅ + ⋅  alakban. Az így meghatározott (v1, v2) rende-

zett számpárt a v  vektor koordinátáinak nevezzük. Jele: 1 2( , )v v v .

TÉTEL: Vektor koordinátáinak kiszámítása kezdõ- és végpontjának segítségével: A(a1, a2),

B(b1, b2)  fi  1 1 2 2( , )AB b a b a− −
JJJG

.

TÉTEL: Ha a v  vektor koordinátái 1 2( , )v v v , akkor a vektor hossza 2 2
1 2v v v= + .

Vektormûveletek koordinátákkal:

Legyenek 1 2( , )a a a  és 1 2( , )b b b  adott vektorok.

TÉTEL: Két vektor összegének a koordinátái az egyes vektorok megfelelõ koordinátáinak össze-
gével egyenlõk: 1 1 2 2( , )a b a b a b+ + + .

TÉTEL: Két vektor különbségének koordinátái az egyes vektorok megfelelõ koordinátáinak
különbségével egyenlõ: 1 1 2 2( , )a b a b a b− − − .

TÉTEL: Vektor számszorosának koordinátái: 1 2( , )a a al l l .

TÉTEL: Vektor ellentettjének koordinátái: 1 2( , )a a a− − − .

TÉTEL: Ha egy vektort 90º-kal elforgatunk, koordinátái felcserélõdnek és az egyik elõjelet vált:
Az 1 2( , )a a a  vektor +90º-os elforgatottjának koordinátái: 2 1'( , )a a a− .

-90º-os elforgatottjának koordinátái: 2 1”( , )a a a− .

V. Skaláris szorzat

DEFINÍCIÓ: Két vektor szöge:
• Egyállású vektorok szöge 0º, ha egyirányúak; vagy 180º, ha ellentétes irányúak.



MATEMATIKA EMELT SZINTÛ SZÓBELI ÉRETTSÉGI TÉMAKÖRÖK, 2026 MOZAIK KIADÓ

112

• Nem egyállású vektorok esetén a vektorok hajlásszögén a közös pontból kiinduló vekto-
rok félegyenesei által bezárt konvex szöget értjük.

a
�

a
�

b
�

b
�

aa

DEFINÍCIÓ: Tetszõleges két vektor skaláris szorzata a két vektor abszolút értékének és hajlás-
szögük koszinuszának szorzata: cosa b a b⋅ = ⋅ ⋅ a .

Skaláris szorzat tulajdonságai:

1. kommutatív: a b b a⋅ = ⋅ .

2. skalárral való szorzásra asszociatív: ( ) ( ) ( )a b a b a b⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅l l l
3. disztributív: ( )a b c a c b c+ ⋅ = ⋅ + ⋅

TÉTEL: Két vektor skaláris szorzata akkor és csak akkor 0, ha a két vektor merõleges egymásra:
0a b a b⋅ = ⇔ ⊥ .

TÉTEL: Két vektor skaláris szorzata koordinátákkal: 1 1 2 2a b a b a b⋅ = + , azaz a megfelelõ koor-
dináták szorzatának összege.

BIZONYÍTÁS:

1 2 1 2

1 2 1 2

( , )

( , )

a a a a a i a j

b b b b b i b j

⇒ = +

⇒ = +
2 2

1 2 1 2 1 1 1 2 2 1 2 2

2

1 1 2 22

( ) ( )

1 1 cos0 1

1 1 cos0 1

1 1 cos90 0

a b a i a j b i b j a b i a b i j a b i j a b j

i
a b a b a b

j

i j j i

⎫⋅ = + ⋅ + = + ⋅ + ⋅ +
⎪
⎪= ⋅ ⋅ ° = ⎪ ⇒ ⋅ = +⎬
⎪= ⋅ ⋅ ° =
⎪

⋅ = ⋅ = ⋅ ⋅ ° = ⎪⎭

VI. Alkalmazások:
• Vektorok bizonyításban: háromszög súlypontja harmadolja a súlyvonalakat; Euler-egyenes:

a háromszög köré írható kör középpontja, súlypontja, magasságpontja egy egyenesen van és
1
2

KS
SM

= .

• Szögfüggvények tetszõleges forgásszögre történõ definiálása egységvektorok segítségével
történik.

• Fizikában vektormennyiségek (erõ, elmozdulás) összeadásában, felbontásában, a munka
egyenlõ az erõ és az elmozdulás skaláris szorzatával.

• Skaláris szorzat: a koszinusztétel bizonyítása
• Koordináta-geometriában az egyenes normálvektora, illetve irányvektora segítségével az

egyenes egyenletének felírása

Matematikatörténeti vonatkozások:

• A vektor fogalma absztrakció útján alakult ki, használata a matematikában és a fizikában
végigkíséri tanulmányainkat. Elõször az eltolás, mint geometriai transzformáció, kapcsán ta-
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nulmányozzuk, ezalatt tapasztaljuk, hogy a vektormodellben való gondolkodás segít a prob-
lémamegoldásban, fizikában a jelenségek értelmezésében, pl. elmozdulás, erõ, sebesség le-
írásában, a vektorok skalárszorzata a munka jellemzésében.

• Descartes francia matematikus az 1600-as években alkotta meg a derékszögû koordináta-
rendszert, geometriai problémák megoldásakor sokszor alkalmazott algebrai módszereket.
Írt egy Geometria címû könyvet, amelyben egy pont helyzetét két koordinátájával adjuk meg.

• Hamilton ír matematikus és csillagász használta elõször a vektor elnevezést az 1800-as
években.
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19. Szakaszok és egyenesek a koordinátasíkon.
Párhuzamos és merõleges egyenesek.
Elsõfokú egyenlõtlenségek, egyenletrendszerek grafikus
megoldása

Vázlat:
I. Szakaszok a koordinátasíkon: szakasz hossza, osztópontok

II. Az egyenest meghatározó adatok
III. Az egyenes egyenletei
IV. Egyenesek párhuzamosságának és merõlegességének feltételei
V. A lineáris függvény grafikonjának és az egyenesnek kapcsolata

VI. Elsõfokú egyenlõtlenségek grafikus megoldása
VII. Elsõfokú egyenletrendszerek grafikus megoldása

VIII. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Szakaszok a koordinátasíkon: szakasz hossza, osztópontok

TÉTEL: A síkbeli derékszögû koordináta-rendszerben az A(a1, a2) és B(b1, b2) végpontokkal

meghatározott szakasz hossza az 
JJJG
AB  hossza: = − + −

JJJG
2 2

1 1 2 2( ) ( ) ,AB b a b a  ami egyben az

A és B pontok távolsága.

Szakasz osztópontjainak koordinátái, ahol A(a1, a2) és B(b1, b2):
A bizonyításokat helyvektorokkal végezzük: az A pontba mutató helyvektor 1 2( ; )a a a , a B pontba

mutató helyvektor 1 2( ; )b b b , ...

TÉTEL: Szakasz felezõpontjának koordinátái 
+ +⎛ ⎞

⎜ ⎟
⎝ ⎠

1 1 2 2; .
2 2

a b a b
F

BIZONYÍTÁS: 
− − += ⇒ = + =

JJJG
.

2 2 2
b a b a a b

AF f a

x

y

B b b( ; )1 2

A( ; )a a1 2

F x y( ; )

0

a
�

f
�

b
�
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TÉTEL: Szakasz harmadolópontjainak koordinátái 

⎧ + +⎛ ⎞
⎜ ⎟⎪⎪ ⎝ ⎠

⎨
+ +⎛ ⎞⎪

⎜ ⎟⎪ ⎝ ⎠⎩

1 1 2 2

1 1 2 2

2 2
;

3 3
.

2 2
;

3 3

a b a b
H

a b a b
G

BIZONYÍTÁS:

1

2

2
3 3 3 .

2( ) 22
3 3 3

b a a bABh a AH a a

b a a bABg a AH a a

⎫− += + = + = + = ⎪⎪
⎬

− + ⎪= + = + = + = ⎪⎭

JJJGJJJJG

JJJGJJJJG

x

y

0

A( ; )a a1 2

H x y1( ; )1 1

H x y2( ; )2 2

B b b( ; )1 2

a
�

b
�

h
�

1
h
�

2

TÉTEL: Az A(a1; a2), B(b1; b2), C(c1; c2) háromszög súlypontjának koordinátái:

1 1 1 2 2 2;
3 3

a b c a b c
S

+ + + +⎛ ⎞
⎜ ⎟
⎝ ⎠

BIZONYÍTÁS: A háromszög súlypontja a C csúcsból kiinduló súlyvonal C-tõl távolabbi harma-
dolópontja, vagyis a CF szakasz C-tõl távolabbi harmadolópontja.

22 2
3 3 3

a b cf c a b cs

+⋅ ++ + += = =

II. Egyenest meghatározó adatok
Egy egyenest a síkban egyértelmûen meghatározhatunk 2 pontja, vagy egy pontja és egy, az állását
jellemzõ adata segítségével. Ilyen, az egyenes állását jellemzõ adat: az egyenes irányvektora, nor-
málvektora, irányszöge, iránytangense.

DEFINÍCIÓ: Az egyenes irányvektora bármely, az egyenessel párhuzamos, nullvektortól különbö-
zõ vektor. Jele: 1 2( ; )v v v .

DEFINÍCIÓ: Az egyenes normálvektora bármely, az egyenesre merõleges, nullvektortól különbö-
zõ vektor. Jele: ( ; )n A B .

DEFINÍCIÓ: Az egyenes irányszögének nevezzük azt a 
2 2

− < ≤p pa  szöget, amelyet az egyenes az

x tengely pozitív irányával bezár.
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DEFINÍCIÓ: Az egyenes irányszögének tangensét (amennyiben létezik) az egyenes iránytangensé-

nek (iránytényezõjének vagy meredekségének) nevezzük. Jele: m = tga. Az 90º
2

= =pa

irányszögû, vagyis az y tengellyel párhuzamos egyenesnek nincs iránytangense.

x

y

0

v v v
�
( ; )1 2

e

       

x

y

0

n A B
�

( ; )

e

       

x

y

0

e

a
b

a
b

> 0

< 0
f

Összefüggések az egyenes állását meghatározó adatok között:

• ha az egyenes egy irányvektora 1 2( ; )v v v , akkor normálvektora lehet 2 1( ; )n v v−  vagy

2 1( ; )n v v− , illetve meredeksége 2

1
tg

v
m

v
= = a , ebbõl felírható az a irányszög is.

• ha az egyenes egy normálvektora ( ; )n A B , akkor irányvektora lehet ( ; )v B A−  vagy

( ; )v B A− ; illetve meredeksége Am
B

= −  (B π 0) = tga, ebbõl felírható az a irányszög is.

• ha az egyenes meredeksége m, akkor ebbõl irányszöge a = arctgm, irányvektora lehet:
(1; )v m , normálvektora ( ;1)n m−  vagy ( ; 1)n m − .

• ha az egyenes irányszöge a, akkor meredeksége m = tga. Ebbõl irányvektor és normálvek-
tor is meghatározható. Ha a = 90º, akkor m nem létezik, de (0;1)v , illetve (1; 0)n .

Összefüggés az egyenes két adott pontja és az egyenes állását meghatározó adatok között:

Ha az egyenes két különbözõ pontja A(a1; a2) és B(b1; b2), akkor AB
JJJG

 lehet az egyenes egy irány-
vektora: 1 1 2 2( ; )v b a b a− −  egy normálvektora 2 2 1 1( ; )n a b b a− −  vagy − −2 2 1 1( ; )n b a a b , mere-

deksége 2 2

1 1

b a
m

b a
−=
−

; ebbõl felírható irányszöge is: a = arctgm.

III. Az egyenes egyenletei

DEFINÍCIÓ: Egy alakzat egyenletén a síkbeli xy koordináta-rendszerben olyan egyenletet értünk,
melyet az alakzat pontjainak koordinátái kielégítenek, de más síkbeli pontok nem.

TÉTEL: Ha egy egyenesnek adott a P0(x0; y0) pontja és egy ( ; )n A B  normálvektora, akkor az egye-
nes normálvektoros egyenlete: Ax + By = Ax0 + By0.

BIZONYÍTÁS: Egy P(x; y) pont akkor és csak akkor van rajta az e egyenesen, ha a 0P P
JJJJG

 vektor

merõleges az egyenes ( ; )n A B  normálvektorára.

Ha P0 pont helyvektorát 0r , a P pont helyvektorát az r  jelöli, akkor 0 0P P r r= −
JJJJG

,

koordinátákkal 0 0 0( ; )P P x x y y= − −
JJJJG

.
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x

y

0

e
P x y( ; )

P x y0 0 0( ; )

n A B
�

( ; )

r
�

r
�

0

P P r r0 0= –
� �

0P P
JJJJG

 akkor és csak akkor merõleges az egyenes normálvektorára, ha skaláris szorzatuk 0,

azaz 0 0P P n⋅ =
JJJJG

, vagyis (x - x0) ◊ A + (y - y0) ◊ B = 0, rendezve Ax + By = Ax0 + By0.

TÉTEL: Ha egy egyenesnek adott a P0(x0; y0) pontja és egy 1 2( ; )v v v  irányvektora, akkor az egye-

nes irányvektoros egyenlete: v2x - v1y = v2x0 - v1y0.

BIZONYÍTÁS: Ha 1 2( ; )v v v  irányvektor, akkor 2 1( ; )n v v−  egy normálvektor. Ezt helyettesítve

(A = v2; B = -v1) a normálvektoros egyenletbe, kész a bizonyítás.

TÉTEL: Ha adott az y tengellyel nem párhuzamos egyenes egy P0(x0; y0) pontja és m iránytangen-
se, akkor iránytényezõs egyenlete: y - y0 = m ◊ (x - x0).

BIZONYÍTÁS: Ha m iránytényezõ, akkor (1; )v m  irányvektor, vagyis ( ; 1)n m −  normálvektor. Ezt

behelyettesítve (A = m; B = -1) a normálvektoros egyenletbe: mx - y = mx0 - y0 ¤ y - y0 =
= mx - mx0 ¤ y - y0 = m ◊ (x - x0).

TÉTEL: Az y tengellyel párhuzamos, P0(x0; y0) ponton átmenõ egyenes egyenlete: x = x0.

DEFINÍCIÓ: Két egyenes metszéspontja (ha létezik) egy olyan pont, amely illeszkedik mindkét
egyenesre.
A metszéspont koordinátái a két egyenes egyenletébõl álló egyenletrendszer megoldásai.

DEFINÍCIÓ: Két egyenes hajlásszöge visszavezethetõ irányvektoraik vagy normálvektoraik szögére.

Két vektor szögét skaláris szorzattal számolhatjuk ki: cos e f

e f

n n

n n

⋅
=

⋅
j , vagy

cos e f

e f

v v

v v

⋅
=

⋅
j .

IV. Egyenesek párhuzamosságának és merõlegességének feltételei

Legyen két egyenes e és f, irányvektoraik ev  és fv , normálvektoraik: en  és fn , irányszögeik ae

és af, iránytangenseik me és mf (ha léteznek)
• e ª f ¤ e fv vª , azaz van olyan l (π 0) valós szám, hogy e fv v= ⋅l , vagy

e fn nª , azaz van olyan l (π 0) valós szám, hogy e fn n= ⋅l , vagy

ae = af, vagy
me = mf.
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•  e ^ f ¤ e fv v^ , azaz 0e fv v⋅ = , vagy

e fn n^ , azaz 0e fn n⋅ = , vagy

e fn v= ⋅l  (l π 0), vagy

fev n= ⋅l  (l π 0), vagy

me ◊ mf = -1.

V. Kapcsolat a lineáris függvények grafikonja és az egyenesek között

TÉTEL: Nem minden egyenes egy lineáris függvény képe.

BIZONYÍTÁS: A fenti egyenes egyenletekbõl látható, hogy a koordinátasík minden egyenese
Ax + By + C = 0 alakba írható, ahol A és B közül legalább az egyik nem 0.
A megfordítás is igaz, azaz minden Ax + By + C = 0 egyenlet, ahol A és B közül legalább az
egyik nem 0, a koordinátasík valamelyik egyenesének egyenlete.

Ha B π 0, akkor az egyenletbõl kifejezhetjük y-t: ,A Cy x
B B

= − −  vagyis y = ax + b alakú, ami

a lineáris függvényt leíró képlet.

Ha B = 0, akkor az egyenlet Ax + C = 0, de ekkor v1 = 0, azaz e ª y fi ,Cx
A

= −  képe az y

tengellyel párhuzamos egyenes.
Az y tengellyel párhuzamos egyenesek azonban nem lehetnek semmilyen függvénynek
a grafikonjai. Az ilyen egyenesek egyenlete x = c, azaz konstans, vagyis egyetlen x értékhez
több hozzárendelt y érték van, ezért ez nem lehet függvény.
Tehát nem minden egyenes lehet lineáris függvény grafikonja.

TÉTEL: Minden lineáris függvény képe egy egyenes.

BIZONYÍTÁS: A lineáris függvények x ® ax + b grafikonjának egyenlete y = ax + b. Az elõbbiek
alapján ez egyenes egyenlete.
Ha a = 0, akkor y = b, ez az x tengellyel párhuzamos egyenes.
Ha a π 0, akkor olyan egyenes, amely sem az x tengellyel, sem az y tengellyel nem párhuza-
mos.

VI. Elsõfokú egyenlõtlenségek grafikus megoldása

DEFINÍCIÓ: Elsõfokú egyismeretlenes egyenlõtlenségek ax + b > 0 (a π 0) alakba hozhatóak.

Ha a > 0, akkor bx
a

> − Ha a < 0, akkor bx
a

< −

x

y

0b

a
–

y = x+ba

x

y

0b

a
–

y = x+ba

Megengedett az egyenlõség is, így természetesen a megoldásban is.
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DEFINÍCIÓ: Elsõfokú kétismeretlenes egyenlõtlenségek ax + by + c > 0 (a π 0) alakba hozhatóak.

Ha b > 0, akkor Ha b < 0, akkor Ha b = 0, akkor
a cy x
b b

> − − a cy x
b b

< − − ax + c > 0. (egyismeretlenes)

x

c

b
–

= – –
a c

y x
b b

y

0

a > 0

x

= – –
a c

y x
b b

c

b
–

y

0

a < 0

VII. Elsõfokú egyenletrendszerek grafikus megoldása

Az elsõfokú kétismeretlenes egyenletrendszer általános alakja: },ax by c
dx ey f

+ =
+ =  ahol a, b, c, d, e, f

valós számok. Mindkét egyenlet egyenes egyenlete, így ezeket az egyeneseket közös koordináta-
rendszerben ábrázolva megkapjuk az egyenletrendszer megoldáshalmazát:

• Ha a két egyenes metszi egymást, akkor a metszéspont két koordinátája az egyenletrendszer
megoldáspárja.

• Ha a két egyenes párhuzamos egymással, akkor nincs metszéspontjuk, tehát az egyenletrend-
szernek nincs megoldása.

• Ha a két egyenes egybeesik, azaz a két egyenlet egymásnak számszorosa, vagyis ekvivalen-
sek, akkor végtelen sok megoldáspár van: minden olyan pont két koordinátája kielégíti az
egyenletrendszert, amely illeszkedik az egyenesre.

x

y

1

1

x

y

1

1

x

y

1

1

2x - y = 4  ¤  y = 2x - 4

x + 3y = 9  ¤  y = 1
3

−  + 3

Megoldás: x = 3, y = 2

2x - y = 4  ¤  y = 2x - 4
6x - 3y = 3  ¤  y = 2x + 1

Nincs megoldás

2x - y = 4  ¤  y = 2x - 4

Minden (x; 2x - 4) számpár
megoldás.
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VIII. Alkalmazások:
• Adott tulajdonságú ponthalmazok keresése, ha elemi módszerrel nem boldogulunk
• Kétismeretlenes egyenlõtlenség-rendszer megoldása

Pl.:
2 12 1

33 2 12 , 6 ,
2

2 5 5
2 2

y xx y

x y x y y x x y

x y xy

< + ⎫− + < ⎫ ⎪⎪ ⎪+ < ∈ ⇒ < − + ∈⎬ ⎬⎪+ > ⎪⎭
> − + ⎪

⎭

Z Z

x

y

1

1

y x= 2 + 1

y = – + 6
3
2
x

y = – +
x

2
5
2

y x< 2 + 1

   

x

y

1

1

y x= 2 + 1

y = – + 6
3
2
x

y < – + 6
3
2
x

y = – +
x

2
5
2

   

x

y

1

1

y x= 2 + 1

y = – + 6
3
2
x

y = – +
x

2
5
2

y > – +
x

2
5
2

A három terület metszete:

x

y

1

1

y x= 2 + 1

y = – + 6
3
2
x

y = – +
x

2
5
2

(2 ; 2 )

P(2; 2) az egyetlen megfelelõ pont fi x = 2, y = 2
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• A lineáris programozás (egyes folyamatok leggazdaságosabb megszervezésének módszere)
bizonyos lineáris egyenlõtlenség-rendszerek megoldásával és ennek feltételeivel foglalkozik

• Elemi geometriai problémák egyszerûbb megoldása. Pl.: a háromszög magasságvonalai egy
pontban metszik egymást. Eddig ezt geometriai módon bizonyítottuk, koordináta-geometriai
ismeretekkel beláthatjuk algebrai módszerekkel. Célszerû A(a; 0), B(b; 0) C(c1; c2) helyzetbe
illeszteni a háromszöget, azaz az x tengelyre felvenni a háromszög két csúcspontját.

• Egyenletes mozgások út-idõ grafikonja mindig egyenes (szakasz); a mozgások vizsgálatakor
a mozgás pályájának ismeretében információkat kaphatunk a mozgásról:

t

s

Matematikatörténeti vonatkozások:

• A koordináta-geometria (analitikus geometria) alapvetõ jellemzõje, hogy geometriai problé-
mákat, feladatokat algebrai módszerekkel, a koordináta-rendszer segítségével tárgyalja és
oldja meg. A geometriának ez a megközelítése elõször Apollóniusz kúpszeletekrõl írt köny-
vében jelenik meg a Kr. e. III. században.

• Ptolemaiosz (Kr. e. kb. 150) a Föld egy pontjának helyét a mai földrajzi szélességnek és
hosszúságnak megfelelõ adatokkal határozta meg, tehát gömbi koordinátákat használt.

• Descartes 1637-ben megjelent Geometria c. könyvét tekintjük az elsõ koordináta-geometriai
mûnek, ebben már következetesen használja az újkori matematikai jelöléseket. Ebben
a könyvében aritmetizálta az euklideszi geometriát: Descartes középpontba állítja az origót,
a centrumot és a belõle sugárzó alapirányokat, azaz a vertikális és a horizontális tengelyt.
A descartes-i koordináta-rendszernek köszönhetõen a görbék leírhatók egyenlettel.

• A koordináta szó az 1700-as évek elejétõl Leibniz német matematikustól származik.
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20. A kör és a parabola elemi úton és a koordinátasíkon.
Kör és egyenes, parabola és egyenes kölcsönös helyzete.
Másodfokú egyenlõtlenségek grafikus megoldása

Vázlat:
I. Kör definíciója, egyenlete

II. Parabola definíciója, egyenletei
III. Kör és egyenes kölcsönös helyzete
IV. Parabola és egyenes kölcsönös helyzete
V. Másodfokú egyenlõtlenségek

VI. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás

I. Kör és egyenlete

DEFINÍCIÓ: A kör azon pontok halmaza a síkon, amelyek egy adott ponttól adott távolságra van-
nak. Az adott pontot a kör középpontjának, az adott távolságot a kör sugarának nevezzük.
Tehát a kört a síkon egyértelmûen meghatározza a középpontja és sugara.

TÉTEL: A C(u; v) középpontú, r sugarú kör egyenlete (x - u)2 + (y - v)2 = r2.

BIZONYÍTÁS: A P(x; y) pont akkor és csak akkor van a körön, ha CP távolság éppen r, azaz
CP = r.

x

y
P x y( ; )

0

r

C u v( ; )

k

2 2( ) ( )CP x u y v r= − + − =  fi  mivel mindkét oldal nemnegatív, négyzetre emeléssel ek-

vivalens kifejezéshez jutunk: (x - u)2 + (y - v)2 = r2, amit a kör pontjai kielégítenek, de más
pontok nem.

A kör egyenlete kétismeretlenes másodfokú egyenlet, hiszen az egyenlete:

x2 + y2 - 2ux - 2vy + u2 + v2 - r2 = 0

alakra hozható, azaz átalakítható:

x2 + y2 + Ax + By + C = 0

alakúra, ahol A, B, C olyan valós számok, amelyekre A2 + B2 - 4C > 0.
Ekkor a kör középpontjának koordinátáira:

2 ; 2 ;
2 2
A Bu A u v B v− = ⇒ = − − = ⇒ = −

illetve
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u2 + v2 - r2 = C  fi  
2 2

2
4 4

A B r C+ − =   fi  
2 2

2
4

A Br C+= −   fi  
2 2

2 4
4

A B Cr + −=   fi

2 2 2 24 4
4 2

A B C A B Cr + − + −= = .

Azaz a kör középpontja ( );
2 2
A BC − − , sugara 

2 2 4
2

A B Cr + −= . Ebbõl láthatjuk, hogy nem min-

den x2 + y2 + Ax + By + C = 0 egyenlet kör egyenlete.

II. Parabola és egyenletei

DEFINÍCIÓ: A parabola azon pontok halmaza a síkon, amelyek a sík egy v egyenesétõl és az egye-
nesre nem illeszkedõ F ponttól egyenlõ távolságra vannak.
Az adott egyenes a parabola vezéregyenese (direktrixe), az adott pont a parabola fókusz-
pontja.

d

t

P

F

T
p

A vezéregyenes és a fókuszpont távolsága a parabola paramétere (p > 0).
A fókuszpontra illeszkedõ és a vezéregyenesre merõleges egyenes a parabola szimmetriaten-
gelye, röviden tengelye (t).
A parabola tengelyen lévõ pontja a parabola tengelypontja (T). A tengelypont felezi a fó-
kusz és a vezéregyenes távolságát.

TÉTEL: Az ( )0;
2
p

F  fókuszpontú 
2
p

y = −  vezéregyenesû parabola egyenlete: 21
2

y x
p

= .

Ez azt is jelenti, hogy a parabola tengelypontja T(0; 0), paramétere p (és a fókusza a tengely-

pont felett van, azaz a parabola „pozitív” állású), ekkor a parabola egyenlete 21
2

y x
p

= .

BIZONYÍTÁS:

x

y

0

y

Q

P x y( ; )

0;
2

p
F

� �
� �
� �

2

p

= —
2

p
y

A vezéregyenes egyenlete: 
2
p

y = − . Egy síkbeli P pont akkor és csak akkor illeszkedik a pa-

rabolára, ha a parabola fókuszától és vezéregyenesétõl egyenlõ távolságra van. A P pont és
a vezéregyenes távolsága egyenlõ a PQ távolsággal, ahol Q a P pont merõleges vetülete a v

vezéregyenesen, ezért ( );
2
p

Q x − .
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( ) ( )
( ) ( )

2 2
2

2 2
2 2

( )
2 2

( 0)
2 2

p p
PQ x x y y

PQ PF
p p

PF x y x y

⎫
⎪= − + + = +
⎪ =⎬
⎪

= − + − = + − ⎪⎭

,

azaz

( ) ( )2 2
2

2 2
p p

y x y+ = + − .

Mivel mindkét oldal nemnegatív, a négyzetre emelés ekvivalens egyenletet ad:

( ) ( )2 2
2

2 2
p p

y x y+ = + −

2 2
2 2 2

4 4
p p

y py x y py+ + = + − +

2py = x2  fi (mivel p > 0): 21
2

y x
p

=  (origó tengelypontú ( )0;
2
p

F  fókuszpontú parabola

tengelyponti egyenlete).

TÉTEL: A p paraméterû T(u, v) tengelypontú, y tengellyel párhuzamos szimmetriatengelyû para-
bolák tengelyponti egyenlete és jellemzõik:

21 ( )
2

y x u v
p

= − + 21 ( )
2

y x u v
p

= − − +

; +
2

p
F u v

� �
� �
� �

( ; )T u v

: –
2

p
v y v�

:t x u�

; –
2

p
F u v

� �
� �
� �

( ; )T u v

: +
2

p
v y v�

:t x u�

Minden másodfokú függvény grafikonja az y tengellyel párhuzamos tengelyû parabola, és minden
y tengellyel párhuzamos tengelyû parabola valamelyik másodfokú függvény grafikonja.

fi  f(x) = a ◊ x2 + b ◊ x + c = y  teljes négyzetté alakítva átalakítható 21 ( )
2

y x u v
p

= ± − +  alakba.

‹ Minden 21 ( )
2

y x u v
p

= ± − +  parabola esetén zárójelfelbontás, összevonás után megkapható az

y = a ◊ x2 + b ◊ x + c alak.



MATEMATIKA EMELT SZINTÛ SZÓBELI ÉRETTSÉGI TÉMAKÖRÖK, 2026 MOZAIK KIADÓ

125

III. Kör és egyenes kölcsönös helyzete

Egy síkban egy körnek és egy egyenesnek háromféle helyzete lehet: nincs közös pontjuk, egy
közös pontjuk van (az egyenes érinti a kört), két közös pontjuk van (az egyenes metszi a kört).

e

k
E

M1

M2

e kÇ Æ= e k EÇ = e k M MÇ ={ ; }1 2

e
e

Egy kör és egy egyenes közös pontjainak a meghatározása az egyenleteikbõl álló egyenletrend-
szer megoldásával történik a következõ módon:
Az egyenes egyenletébõl kifejezzük az egyik ismeretlent, és azt a kör egyenletébe behelyettesítjük.
Így egy másodfokú egyismeretlenes egyenletet kapunk.
Az egyenlet diszkriminánsa határozza meg a közös pontok számát. Ha D > 0, akkor az egyenletnek
2 megoldása van, vagyis az egyenes metszi a kört. Ha D = 0, akkor az egyenletnek egy megoldása
van, vagyis az egyenes érinti a kört. Ha D < 0, akkor az egyenletnek nincs megoldása, vagyis az
egyenesnek és a körnek nincs közös pontja.

IV. Parabola és egyenes kölcsönös helyzete

Parabola és egyenes közös pontjainak a száma lehet 2, 1, 0.

2 közös pont 1 közös pont

vagy

0 közös pont

p

e

p

e

p

e

p

e

Az a tény, hogy a parabolának és az egyenesnek egy közös pontja van, nem jelenti azt, hogy az egyenes
érintõje a parabolának, mert az is lehetséges, hogy az egyenes párhuzamos a parabola tengelyével.

DEFINÍCIÓ: A parabola érintõje olyan egyenes, melynek egy közös pontja van a parabolával és
nem párhuzamos a parabola tengelyével.

Parabola és érintõjének meghatározása kétféle módon:

• Az egyenes egyenletét egy paraméterrel felírva (célszerû paraméternek az m meredekséget
választani), ilyenkor is figyelni kell, hogy m ne a tengellyel párhuzamos egyenesre utaljon.
Olyan m értéket keresünk, amely az egyenesre felírt elsõfokú, paraméteres, kétismeretlenes
egyenletnek, vagyis egyenletrendszernek pontosan egy megoldáspárját adja.
A megoldás módja pl. a parabola egyenletébõl behelyettesítünk az egyenes egyenletébe
(vagy fordítva), ekkor egy paraméteres, egyismeretlenes, másodfokú egyenletet kapunk.
Az egyenes akkor és csak akkor érinti a parabolát, ha az egyenlet diszkriminánsa 0. Az így
kapott (általában m-re nézve másodfokú) egyenlet valós megoldásai (ha léteznek) adják
a kérdéses érintõk meredekségét, amibõl egyenletük már felírható.
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• Az y tengellyel párhuzamos tengelyû parabola érintõjének meredeksége a parabola egyenle-
tébõl kapható másodfokú függvény deriváltjából határozható meg (ez jóval gyorsabb és egy-
szerûbb az elõzõ módszernél).
Az y tengellyel nem párhuzamos tengelyû, vagyis az x tengellyel párhuzamos tengelyû para-
bola érintõjének meredeksége a parabola egyenletébõl kapható gyökfüggvény (figyelni kell,
hogy melyik ágát nézzük) deriváltjából határozható meg (ez bonyolultabb, nagyobb odafi-
gyelést kíván az elõzõ módszernél).

V. Másodfokú egyenlõtlenségek
DEFINÍCIÓ: Egyenlõtlenségrõl beszélünk, ha algebrai kifejezéseket a <, >, £, ≥ jelek valamelyiké-

vel kapcsoljuk össze. Ha ezek a kifejezések másodfokúak, akkor másodfokú egyenlõtlen-
ségrõl beszélünk.

Az egyenlõtlenségek megoldási módszerei hasonlóak az egyenletek megoldási módszereihez:

1. A mérlegelv alkalmazásakor az egyik eltérés a negatív értékkel való szorzás, illetve osztás,
mert ekkor az egyenlõtlenség iránya megváltozik. Ezért el kell kerülni az ismeretlent tartal-
mazó kifejezéssel történõ szorzást, osztást. Ehelyett 0-ra rendezés után elõjelvizsgálatot kell
végezni, amit célszerû grafikusan megoldani. Másik eltérés a két oldal reciprokának vétele-
kor áll fenn. Mindkét oldal reciprokát véve, ha az egyenlõtlenség mindkét oldalán azonos
elõjelû kifejezés áll, akkor a reláció iránya megváltozik, ha különbözõ elõjelû, akkor nem

változik a relációs jel. (Pl. 2 < 3 ekkor 1 1
2 3

> , -3 < -2 ekkor 1 1
3 2

− > − , de ha -3 < 2 ekkor

1 1
3 2

− < .)

2. Grafikus megoldás: A másodfokú egyenlõtlenségek megoldásakor fontos szerepet játszik,
hogy az egyenlõtlenségekben szereplõ másodfokú kifejezések grafikonja a koordináta-
rendszerben parabola. A másodfokú egyenlet megoldásához hasonlóan 0-ra rendezünk úgy,
hogy a fõegyüttható pozitív legyen, tehát a > 0. Ekkor ax2 + bx + c ≥ 0, ax2 + bx + c > 0,
ax2 + bx + c £ 0 vagy ax2 + bx + c < 0 alakú minden másodfokú egyenlõtlenség.
Ha a bal oldalon álló kifejezés által meghatározott függvényt (f(x) = ax2 + bx + c) ábrázoljuk,
akkor, mivel a értéke pozitív, ezért felül nyitott, pozitív állású parabolát kapunk. Az egyenlõt-
lenség megoldása ekkor egyenértékû az f(x) ≥ 0, f(x) £ 0, f(x) > 0, illetve f(x) < 0 vizsgálattal.
Ehhez elõször határozzuk meg az f(x) függvény zérushelyeit:
• Ha két zérushely van, x1 és x2 (ahol x2 < x1), akkor lehetõségeink az f(x) függvény elõjelé-

re (f(x1) = f(x2) = 0):

xx1x2

–

Egyenlõtlenség Megoldáshalmaz

ax2 + bx + c ≥ 0 x Œ]-•, x2] » [x1, •[

ax2 + bx + c > 0 x Œ]-•, x2[ » ]x1, •[

ax2 + bx + c £ 0 x Œ[x2, x1]

ax2 + bx + c < 0 x Œ]x2, x1[

Azaz, ha ≥ helyett >, £ helyett < szerepel csak, akkor megoldásunkban a zárt intervallum-
végeket nyitottra cseréljük.
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• Ha egy zérushely van, x1, akkor lehetõségeink az f(x) függvény elõjelére (f(x1) = 0):

xx1

Egyenlõtlenség Megoldáshalmaz

ax2 + bx + c ≥ 0 x ŒR

ax2 + bx + c > 0 x ŒR \ {x1}

ax2 + bx + c £ 0 x = x1

ax2 + bx + c < 0 x Œ{ }

• Ha 0 zérushely van, akkor )(xf  mindenütt pozitív:

x

Egyenlõtlenség Megoldáshalmaz

ax2 + bx + c ≥ 0 x ŒR

ax2 + bx + c > 0 x ŒR

ax2 + bx + c £ 0 x Œ{ }

ax2 + bx + c < 0 x Œ{ }

VI. Alkalmazások:
Koordináta-geometria segítségével elemi geometriai feladatok algebrai úton oldhatók meg:

• Adott tulajdonságú ponthalmaz keresése: Mi azon P pontok halmaza, amelyekre adott A, B

esetén 1
3

PA
PB

= ?

 (Apollóniosz-kör)

A B
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• Kör területének meghatározása integrálással (kell hozzá az integrálandó függvény)

2
2 2 2 2 2 2 2

0
4

r
rx y r y r x T r x dx π+ = ⇒ = − ⇒ = − =∫

y

x

r

r

• A parabolaantenna mûködésének lényege a parabola és fókuszának tulajdonságával magya-
rázható: a tengellyel párhuzamosan beesõ jel a fókuszon keresztül verõdik vissza

t

b

v

E

e

• Mesterséges égitestek pályája az úgynevezett szökési sebesség esetén parabola
• Szélsõérték-feladatok megoldása

Matematikatörténeti vonatkozások:

• Már a Kr. e. III. században élt nagy görög matematikus, Apollóniusz is foglalkozott a kúp-
szeletekkel: a körrel, az ellipszissel, a parabolával és a hiperbolával. 8 kötetes mûvének óriá-
si hatása volt a késõbbi korok matematikusaira (Arkhimédészre, Descartes-ra, Fermat-ra).
Apollóniusz munkásságától függetlenül elõször Euler írt a kúpszeletekrõl 1748-ban.

• Fermat (1601–1665) francia matematikus Descartes elõtt megalkotta a koordináták módsze-
rét, megkereste az egyenes és a kúpszeletek egyenletét. Viszont kutatása nem volt hatással az
analitikus geometria fejlõdésére, ugyanis gondolatait csak levelezõpartnereivel osztotta meg.

• Descartes 1637-ben megjelent Geometria c. könyvét tekintjük az elsõ koordináta-geometriai
mûnek, ebben már következetesen használja az újkori matematikai jelöléseket. Ebben
a könyvében aritmetizálta az euklideszi geometriát: Descartes középpontba állítja az origót,
a centrumot, és a belõle sugárzó alapirányokat, azaz a vertikális és a horizontális tengelyt.
A descartes-i koordináta-rendszernek köszönhetõen a görbék leírhatók egyenlettel.

• Euler (1707–1783) svájci származású matematikus a kúpszeletekrõl végzett kutatásaiban
elsõként haladta meg az Apollóniusz által megállapítottakat. Az analitikus geometria kereté-
ben szinte egymaga alkotta meg a ma használatos trigonometriát.
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21. Térelemek távolsága és szöge. Térbeli alakzatok.
Felszín- és térfogatszámítás

Vázlat:
I. Térelemek, ezek illeszkedése, párhuzamossága, szöge, távolsága

II. Térbeli alakzatok: testek csoportosítása
III. Testek felszíne
IV. Testek térfogata
V. Testek felszíne, térfogata képletekkel

VI. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:

I. Térelemek

Pont, egyenes, sík – alapfogalmak, nem definiáljuk õket, hanem a szemléletbõl kialakult jelenté-
sükre hagyatkozunk.

DEFINÍCIÓ: Két térelem illeszkedõ, ha egyik részhalmaza a másiknak.

DEFINÍCIÓ: Két egyenes párhuzamos, ha egy síkban vannak és nem metszik egymást.

DEFINÍCIÓ: Egyenes és sík, illetve 2 sík párhuzamos, ha nincs közös pontjuk.

DEFINÍCIÓ: Egy egyenest egy rá illeszkedõ pont két félegyenesre oszt, ez a pont mindkét félegye-
nes kezdõpontja.

DEFINÍCIÓ: Egy síkban két, azonos pontból kiinduló félegyenest és az általuk meghatározott bár-
melyik síkrészt szögnek nevezzük. A közös kezdõpont a szög csúcspontja, a két félegyenes
a szög szárai, a síkrész a szögtartomány.

DEFINÍCIÓ: Illeszkedõ vagy párhuzamos térelemek szöge 0º.

DEFINÍCIÓ: Két metszõ egyenes 4 szöget alkot, ezek közül 2-2 egyenlõ. Ha a két egyenes nem
merõleges egymásra, akkor a két egyenes hajlásszöge a kétfajta szög közül a kisebbik.
Ha a két egyenes merõleges egymásra, akkor a hajlásszögük derékszög. Eszerint két metszõ
egyenes hajlásszöge 90º-nál nem nagyobb.

DEFINÍCIÓ: Két egyenes kitérõ, ha nincsenek egy síkban.

DEFINÍCIÓ: Két kitérõ egyenes hajlásszöge egyenlõ a tér egy tetszõleges pontján átmenõ és az
adott egyenesekkel párhuzamos egyenesek hajlásszögével. Ez a szög a pont megválasztásától
független.

TÉTEL: Egy, a síkot metszõ egyenes merõleges a síkra, ha merõleges a sík minden egyenesére
(síkra merõleges egyenes tétele).
Definíció szerint egy egyenes merõleges a síkra, ha merõleges a sík minden olyan egyenesé-
re, amely átmegy az egyenes és a sík metszéspontján.
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DEFINÍCIÓ: Ha az e egyenes nem merõleges a síkra, akkor az egyenes merõleges vetülete a síkon
szintén egyenes (e’). Ebben az esetben az egyenes és a sík hajlásszögén az egyenes és a ve-
tülete hajlásszögét értjük. Ez a szög a legkisebb az egyenes és a sík egyenesei által bezárt
szögek között.

S

e

a

DEFINÍCIÓ: Ha két sík nem párhuzamos egymással, akkor metszésvonaluk egy pontjában mindkét
síkban merõlegest állítunk a metszésvonalra. A két sík hajlásszöge e két egyenes hajlásszö-
gével egyenlõ. Ez a szög a pont megválasztásától független.

a

DEFINÍCIÓ: Két illeszkedõ vagy metszõ térelem távolsága 0.

DEFINÍCIÓ: Két pont távolsága a pontokat összekötõ szakasz hossza.

DEFINÍCIÓ: Pont és egyenes távolsága a pontból az egyenesre bocsátott merõleges szakasz hosz-
sza.

DEFINÍCIÓ: Pont és sík távolsága a pontból a síkra bocsátott merõleges szakasz hossza.

S
P’

P

DEFINÍCIÓ: Párhuzamos egyenesek távolsága: bármelyik egyenes egy tetszõleges pontjának tá-
volsága a másik egyenestõl, azaz a két egyenest összekötõ, mindkettõre merõleges szakasz
hossza.

P

Q

f

d e f =d P f =d Q e =PQ( ; ) ( ; ) ( ; )

e

DEFINÍCIÓ: Két kitérõ egyenes távolsága az õket összekötõ, mindkettõre merõleges szakasz hossza.
Azt az egyenest, amely mindig létezik, egyértelmû, és amely mindkét kitérõ egyenesre me-
rõleges, a két egyenes normáltranszverzálisának nevezzük. Így két kitérõ egyenes távolsága
normáltranszverzálisuk közéjük esõ részének hossza.

e

f
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DEFINÍCIÓ: Egyenes és vele párhuzamos sík távolsága az egyenes egy tetszõleges pontjának
a síktól való távolságával egyenlõ, azaz az egyenes bármely pontjából a síkra bocsátott me-
rõleges szakasz hosszával egyenlõ.

S

eP

e S,d

P’

DEFINÍCIÓ: Két párhuzamos sík távolsága az egyik sík egy tetszõleges pontjának a másiktól vett
távolsága, azaz bármelyik sík egy tetszõleges pontjából a másik síkra bocsátott merõleges
szakasz hossza.

S

P
1S

1
S S,d

P’

II. Térbeli alakzatok

DEFINÍCIÓ: A térnek véges felületekkel határolt részét testnek nevezzük.

DEFINÍCIÓ: A sokszöglapokkal határolt testek a poliéderek.

DEFINÍCIÓ: A szabályos testek olyan poliéderek, amelynek lapjai egybevágó szabályos sokszö-
gek, valamennyi lapszögük és élszögük egyenlõ.

tetraéder

hexaéder (kocka) dodekaéder

oktaéder ikozaéder

DEFINÍCIÓ: Hengerszerû testek: egy síkidom kerületén levõ pontokon keresztül párhuzamosokat
húzunk egy, a síkidom síkjával nem párhuzamos egyenessel. Az így kapott palástfelületet az
eredeti síkidom síkjával és egy vele párhuzamos síkkal elmetszünk. A kapott véges test
a hengerszerû test. Ha a test alaplapja sokszög, akkor hasábnak, ha kör, hengernek nevez-
zük.
Ha a párhuzamos egyenesek merõlegesek az alaplap síkjára, akkor a testet egyenes henger-
szerû testnek, különben ferde hengerszerû testnek nevezzük.
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DEFINÍCIÓ: Kúpszerû testek: egy síkidom kerületén levõ pontokon keresztül egyeneseket húzunk
egy, a síkidom síkjára nem illeszkedõ ponton keresztül. A kapott véges test a kúpszerû test.
Ha a test alaplapja sokszög, akkor gúlának, ha kör, kúpnak nevezzük.
Ha a kúp minden alkotója (az egyeneseknek az adott pont és a síkidom közti szakasza)
egyenlõ hosszú, akkor egyenes kúpszerû testnek, különben ferde kúpszerû testnek nevezzük.
Csonkakúp-szerû testek: ha egy kúpszerû testet az alaplapjával párhuzamos síkkal elmet-
szünk, akkor a két párhuzamos sík közti testet csonkakúp-szerû testnek nevezzük. Ha a test
alaplapja sokszög, akkor csonka gúlának, ha kör, csonka kúpnak nevezzük.

DEFINÍCIÓ: Gömbfelület: egy adott ponttól egyenlõ távolságra levõ pontok halmaza a térben.
Gömböt kapunk, ha egy kört valamelyik átmérõje mentén megforgatunk.

III. Testek felszíne
A felszín jele: A.

Poliéderek felszíne a poliédert határoló véges számú sokszöglap területének az összege.

Poliéderektõl különbözõ testek felszíne:

• Ha a test felülete síkba kiteríthetõ, akkor ennek a kiterített felületnek a területe adja a test
felszínét (pl. henger, kúp).

• Bármely nem poliéder felszíne a test által tartalmazott, illetve a testet tartalmazó poliéderek
felszíneivel határozható meg a kétoldali közelítés módszerével. Ha egyetlen olyan pozitív
valós szám van, amely az adott testet tartalmazó poliéderek felszíneinél nem nagyobb, vala-
mint az adott test által tartalmazott poliéderek felszíneinél nem kisebb, akkor azt a test fel-
színének tekintjük.

Forgástestek felszíne:

TÉTEL: Ha f(x) függvény az [a; b] intervallumon folytonos és f(x) ≥ 0, akkor az f(x) függvény gra-
fikonjának az x tengely körüli megforgatásával keletkezett forgástest palástjának felszíne:

22 ( ) 1 ( ( )) d
b

a

A f x f x x′= ⋅ +∫p .

Ha a forgástest teljes felszínét akarjuk meghatározni, akkor a kapott palásthoz hozzá kell ad-
ni az alaplap és a fedõlap területét is.

TÉTEL: Hasonló testek felszínének aránya megegyezik a hasonlóság arányának négyzetével.

IV. Testek térfogata
A térfogat jele: V.

A poliéder térfogata az a poliéderre jellemzõ pozitív szám, amely rendelkezik a következõ tulaj-
donságokkal

• Az egységkocka térfogata 1.
• Az egybevágó poliéderek térfogata egyenlõ.
• Ha egy poliédert részpoliéderekre vágunk szét, akkor a részek térfogatának összege egyenlõ

az egész poliéder térfogatával.

Poliéderektõl különbözõ testek térfogata:

A test által tartalmazott, illetve a testet tartalmazó poliéderek térfogataival a kétoldali közelítés
módszerével határozható meg. Ha egyetlen olyan pozitív valós szám van, amely az adott testet
tartalmazó poliéderek térfogatainál nem nagyobb, valamint az adott test által tartalmazott poliéde-
rek térfogatánál nem kisebb, akkor azt a test térfogatának tekintjük.
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Forgástestek térfogata:

TÉTEL: Ha f(x) függvény az [a; b] intervallumon folytonos és f(x) ≥ 0, akkor az f(x) függvény gra-
fikonjának az x tengely körüli megforgatásával keletkezett forgástest térfogata:

2( ) d
b

a

V f x x= ∫p .

TÉTEL: Az r sugarú gömb térfogata: 34
3

V r= p .

BIZONYÍTÁS: A gömb származtatható egy félkör átmérõ körüli megforgatásával, ezért térfogata

a 2( ) d
b

a

V f x x= ∫p  összefüggéssel meghatározható.

Az origó középpontú, r sugarú kör egyenlete x2 + y2 = r2, ebbõl a [-r; r] intervallumon ér-

telmezett 2 2( )f x r x= −  függvény grafikonja egy félkör, melynek x tengely körüli meg-
forgatásával származtatható az r sugarú gömb. Így a gömb térfogata:

( )

3
2 2 2 2

33
2 2 3 3 3

( ) d ( ) d d
3

( ) 2 2 4( )
3 3 3 3 3

r r r

rr r

xV f x x r x x r x x

rrr r r r r r r

−− −

⎡ ⎤= = − = ⋅ − =⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞−⎛ ⎞ ⎡ ⎤= ⋅ − − ⋅ − − = ⋅ − − ⋅ = ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

∫ ∫p p p

p p p

TÉTEL: Hasonló testek térfogatának aránya megegyezik a hasonlóság arányának köbével.

V. Testek felszíne és térfogata

Test Felszín Térfogat

Hasáb

m

A = 2Talap + Tpalást V = Talap ◊ m

Téglatest

A
a b

c

B

C

D
A = 2(ab + bc + ca) V = abc
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Test Felszín Térfogat

Kocka

a

a

a

A = 6a2 V = a3

Henger
r

m = a

A = 2rp(r + a) V = r2pm

Gúla

m

T

A = Talap + Tpalást alap

3

T m
V

⋅
=

Kúp

a
m

r

A = rp(r + a) 2

3
r mV = p

Csonka gúla

m

T

t
A = T + t + Tpalást ( )

3
mV T T t t= ⋅ + ⋅ +

Csonka kúp

m
a

R

r
A = p(R2 + r2 + (R + r)a) 2 2( )

3
mV R Rr r= ⋅ + +p

Gömb

r
2 r

A = 4r2p 34
3
rV = p
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TÉTEL: A csonka kúp térfogata 2 2( )
3

mV R R r r⋅= ⋅ + ⋅ +p .

BIZONYÍTÁS: Egészítsük ki a csonka kúpot egy x magasságú, r alapsugarú kis kúppal. Így a kapott

nagy kúp magassága m + x, alapkörének sugara R, térfogata 2
nagy 3

m xV R+= ⋅ ⋅p , a kis kúp

térfogata 2
kicsi 3

xV r= ⋅ ⋅p .

A csonka kúp térfogata a két kúp térfogatának különbsége: 2 2
csonka 3 3

m x xV R r+= ⋅ ⋅ − ⋅ ⋅p p .

A kis kúp hasonló a nagy kúphoz, a hasonlóság aránya x r
x m R

= =
+

l , ebbõl x + m = Rx
r

⋅  ¤

¤ ( )1Rm x
r

= − ⋅  ¤ 
1

m m rx
R R r
r

⋅= =
−−

.

Ezt behelyettesítjük a csonka kúp térfogatába:
2 2

2 2 2
csonka 3 3 3 3

m x x m R rV R r R x+ ⋅ − ⋅= ⋅ ⋅ − ⋅ ⋅ = ⋅ ⋅ + ⋅ =p pp p p

( )2 2
2 2 2 2( )

3 3 3
m m r R r m rR R R r

R r R r
⋅ ⋅ − ⋅ ⋅= ⋅ ⋅ + ⋅ = ⋅ + ⋅ − =
− −

p p pp

( )2 2 2 2( ) ( ) ( ( )) ( )
3 3 3

m r m mR R r R r R r R r R R r r
R r

⋅ ⋅ ⋅= ⋅ + ⋅ + ⋅ − = ⋅ + ⋅ + = ⋅ + ⋅ +
−

p p p

TÉTEL: A csonka gúla térfogata ( )
3
mV T T t t= ⋅ + ⋅ + .

BIZONYÍTÁS: Egészítsük ki a csonka gúlát egy x magasságú, t alapterületû kis gúlával. Így a kapott

nagy gúla magassága m + x, alapterülete T, térfogata nagy 3
m xV T+= ⋅ , a kis gúla térfogata

kicsi 3
xV t= ⋅ .

A csonka gúla térfogata a két gúla térfogatának különbsége: csonka 3 3
m x xV T t+= ⋅ − ⋅ .

A kis gúla hasonló a nagy gúlához, a hasonlóság aránya x t
x m T

= =
+

l , ebbõl x + m =

= Tx
t

⋅  ¤ 1Tm x
t

⎛ ⎞= − ⋅⎜ ⎟
⎝ ⎠

 ¤ 
1

m m tx
T T t
t

⋅= =
−−

.

Ezt behelyettesítjük a csonka gúla térfogatába:

csonka 3 3 3 3 3 3
m x x m T t m m t T tV T t T x T

T t
+ − ⋅ −= ⋅ − ⋅ = ⋅ + ⋅ = ⋅ + ⋅ =

−

( ) ( )( )
3 3
m t m tT T t T T t T t

T t T t
⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ − = ⋅ + ⋅ + ⋅ − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

( )( ) ( )
3 3
m mT t T t T T t t= ⋅ + ⋅ + = ⋅ + ⋅ +

TÉTEL: Egy r sugarú, a alkotójú kúp felszíne A = rp(r + a).

BIZONYÍTÁS: A kúp palástja kiteríthetõ síkba, alakja olyan körcikk, amelynek sugara a kúp alko-
tója, ívhossza az alapkör kerülete. Így a palást területe:
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palást
sugár ív 2

2 2
a rT ar

⋅ ⋅= = =p p

Így a forgáskúp teljes felszíne A = r2p + arp = rp(r + a).

VI. Alkalmazások
• Térképészetben, földmérésben: távolságmérés, szögmérés
• Építészmérnöki munkában:  távolságmérés, szögmérés, felszín-, térfogatszámítás
• Fizikában sûrûségszámításkor: térfogatszámítás
• Geometriai valószínûség számolásakor: ha az esemény bekövetkezésének valószínûsége

arányos az eseményt szemléltetõ geometriai alakzat mértékével, akkor az esemény bekövet-
kezésének valószínûségét megkapjuk, ha az eseményt és az eseményteret szemléltetõ alak-
zatok mértékeit elosztjuk egymással (felszín, térfogat).

Matematikatörténeti vonatkozások:

• A legkorábbi írásos emlékek a hengerszerû testekrõl Kr. e. 2000 körül keletkeztek. Ezek
szerint Egyiptomban henger alakú gabonatartályok térfogatát meg tudták határozni.

• Kr. e. 325 körül Eukleidész megírta Elemek címû mûvét, amelyben a geometriát axiomati-
kusan építette fel, azaz a szemléletre hagyatkozva alapfogalmakat (axiómákat) határozott
meg, és ezek segítségével bizonyított állításokat. A hasábok, gúlák, gömb térfogatának vizs-
gálatára a kimerítés módszerét (beírt és körülírt hasábok térfogatával való közelítést) hasz-
nálta. Vizsgálta az öt szabályos testet, meghatározta térfogatukat, bebizonyította, hogy csak
öt szabályos test létezik.

• Arkhimédész (Kr. e III. sz.) bebizonyította, hogy a gömb felszíne megegyezik a köré írt
hengerpalást területével, és a térfogata a köré írt henger térfogatának 2/3 része. Egy másik
nevezetes tétele szerint az egyenlõ oldalú henger, a bele írható gömb és a hengerbe írható
kúp térfogatainak aránya 3:2:1.

• Heron a Krisztus elõtti I. században élt görög matematikus síkidomok területének és testek
térfogatának kiszámításával is foglalkozott.

• Janus Pannonius (1434–1472) magyar költõ szépen körülírta a térelemeket, amelyeket a ma-
tematikában nem definiálunk.
Janus Pannonius: A geometriai idomokról
„Pont az, melynek részét felfogni sem tudnád, megnyújtod, s karcsú egyenes fut bármely
irányban. Sík felület születik, ha meg is duplázza futását: széltében terjed, nem nyílik meg
soha mélye. Két-két sík a szilárd testet jellemzi, kiadja hosszúságát és szélességét, meg a mé-
lyét. Kockának, köbnek hívják s négyzetlapú testnek, bárhogy esik, midig jól látni a részeit
ennek; hat síkot foglal magába, a szöglete épp nyolc” (Kurcz Ágnes fordítása)

• Császár Ákos 1949-ben készített egy olyan testet, amelynek bármely két csúcspontja szom-
szédos. A Császár-poliédernek 7 csúcsa, 14 háromszöglapja és 21 éle van (ez nem egyszerû
poliéder).

• Szilassi Lajos szegedi matematikus 1977-ben olyan testet készített, amelynek hét lapja van,
és bármely két lapja szomszédos. A Szilassi-féle poliédert elkészítették rozsdamentes acél-
ból, és Fermat francia matematikus szülõházában, születésének 400. évfordulóján avatták fel.
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22. Területszámítás elemi úton és az integrálszámítás
felhasználásával

Vázlat:
I. Területszámítás

II. Síkidomok területe: téglalap, paralelogramma, háromszög, trapéz, deltoid, négyszögek, sok-
szögek, kör

III. Határozott integrál
IV. Görbe alatti terület
V. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás

I. Területszámítás

A mérés egy egységnyinek tekintett értékkel való összehasonlítást jelent. Ahhoz, hogy mérni tud-
junk, rögzíteni kell a mérés szabályait.

DEFINÍCIÓ: A terület mérése azt jelenti, hogy minden síkidomhoz hozzárendelünk egy pozitív va-
lós számot, amelyet a síkidom területének nevezünk. Ez a hozzárendelés az alábbi tulajdon-
ságokkal rendelkezik:
• Az egységnyi oldalhosszúságú négyzet területe egységnyi.
• Egybevágó sokszögek területe egyenlõ.
• Ha egy sokszöget véges számú sokszögre darabolunk, akkor az egyes részek területének

összege egyenlõ az eredeti sokszög területével.

II. Síkidomok területe
Bebizonyítható, hogy ilyen területértelmezés mellett igazak a következõ állítások:

TÉTEL: A téglalap területe két szomszédos oldalának szorzatával egyenlõ: t = a ◊ b.

Minden paralelogramma átdarabolható téglalappá, így

TÉTEL: a paralelogramma területe: t = a ◊ ma.

a a

a

ma ma

x xa– x

Minden háromszöget valamely oldalának felezõpontjára tükrözve az eredeti háromszög és (az ere-
detivel egybevágó) képe együtt egy paralelogrammát alkot, így a paralelogramma területének a fele

a

a

a

ma

A B

C

g

g

b

b

A’
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TÉTEL: a háromszög területe: 
2

aa m
t

⋅= .

Tükrözve bármely trapézt az egyik szárának felezõpontjára olyan paralelogrammát kapunk,
amelynek területe kétszerese a trapéz területének.

TÉTEL: A trapéz területe az alapok számtani közepének és a trapéz magasságának szorzata:

2
a ct m+= ⋅ .

A B= ’C

D C B= ’

D’

A’a

a c

c

F

g

g

ba

ab

d

d

Minden sokszög véges számú háromszögre darabolható, így

TÉTEL: a sokszög területe egyenlõ ezeknek a háromszögeknek a területösszegével.

TÉTEL: Háromszög területei: 
sin

( ) ( ) ( )
2 2 4

aa m a b a b ct r s s s a s b s c
R

⋅ ⋅ ⋅ ⋅ ⋅= = = ⋅ = = ⋅ − ⋅ − ⋅ −g
,

ahol r a beírt kör sugara, R a körülírt kör sugara, s a félkerület.

a

ma
c b

g

TÉTEL: t = r ◊ s.

BIZONYÍTÁS: A háromszög beírt körének középpontja a szögfelezõk metszéspontja.

A B

C

O

r

r

rb

c

a

Berajzoljuk a szögfelezõket, így ABC háromszöget felbontjuk három háromszögre: az ABO,
BCO és CAO háromszögekre, mindhárom háromszögben az egyik oldalhoz tartozó magasság r.
Így felírható az eredeti háromszög területe a részháromszögek területének összegével.

2 2 2 2ABC ABO BCO CAO
c r a r b r a b ct t t t r r s⋅ ⋅ ⋅ + += + + = + + = ⋅ = ⋅è è è è .

TÉTEL: 
4

a b ct
R

⋅ ⋅= .

BIZONYÍTÁS: A háromszög körülírt körének középpontja az oldalfelezõ merõlegesek metszés-
pontja.
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A

B

C

O

b

R
R

a

2 a

2

a

a

a

Ha CAB kerületi szög a, akkor COB középponti szög 2a (ugyanahhoz az ívhez tartoznak).

COB egyenlõ szárú háromszög  fi 2sin
2

a
a

R R
= =a .

sin 2
2 2 4

ab c
b c a b cRt

R
α ⋅ ⋅⋅ ⋅ ⋅ ⋅= = = .

TÉTEL: Négyszög területe: az átlói hossza és az átlók által bezárt szög szinuszának a szorzatának

fele: 
sin

2
e f

t
⋅ ⋅= j

.

BIZONYÍTÁS: Az ABCD konvex négyszög, átlóinak metszéspontja M. M az átlókat x, e - x, illetve
y, f - y részekre osztja. A két átló 4 db háromszögre osztja a négyszöget, így a négyszög te-
rülete egyenlõ a négy háromszög területének összegével:

A

B

CD

j

j
M

x

y
e–x

f–y

180° – j

180° – j

tABCD = tABMè + tBCMè + tCDMè + tDAMè

( ) sin ( ) ( ) sin(180º ) ( ) sin sin(180º )
2 2 2 2

x f y e x f y e x y y x
t

⋅ − ⋅ − ⋅ − ⋅ − − ⋅ ⋅ ⋅ ⋅ −= + + +j j j j

sin(180º - j) = sinj,  mert  0º < j < 180º,  ekkor  
sin

2
j

-t kiemelve:

[ ] [ ]sin sin
( ) ( ) ( ) ( ) ( )

2 2
t x f y e x f y e x y y x f y e y e= ⋅ ⋅ − + − ⋅ − + − ⋅ + ⋅ = ⋅ − ⋅ + ⋅ =j j

sin sin sin
[ ]

2 2 2
e f

f y y e f e
⋅ ⋅= ⋅ − + ⋅ = ⋅ ⋅ =j j j

.
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ABCD konkáv négyszög, átlóinak metszéspontja M a virtuális átlót x, e - x részekre osztja, míg
a valódi átló: CA = AM - CM.

A

BD
j

M e–x

180° – j

x

y

C

f

Az ABD háromszög területe egyenlõ az ABCD négyszög területének és a BCD háromszög területé-
nek összegével, így

tABCD = tABDè - tBCDè = tABMè + tAMDè - tCBMè - tCMDè.

TÉTEL: A deltoid területe az átlói szorzatának a fele.

TÉTEL: Szabályos sokszög területét úgy kapjuk, hogy középpontjukat összekötjük a csúcsokkal
és így n db egyenlõ szárú háromszögre bontjuk a sokszöget:

2 360ºsin

2 2

R
a r nt n n

⋅⋅= ⋅ = ⋅ ,

ahol r: a beírt kör sugara, R: a körülírt kör sugara.

TÉTEL: AZ r sugarú kör területe: r2p (sorozatok határértékével)

III. Határozott integrál
A határozott integrál segítségével függvénygörbe vonalával határolt síkidomok területét is meg
tudjuk határozni. Ehhez elõször a görbe alatti területet kell vizsgálnunk.

DEFINÍCIÓ: Görbe alatti területnek nevezzük egy [a; b] intervallumon folytonos, korlátos, pozitív
értékû f függvény görbéjének az intervallumhoz tartozó íve, az x = a, az x = b egyenesek és
az x tengely által határolt területet.

y

x=x a =x b

DEFINÍCIÓ: A görbe alatti területet téglalapok egyesítésével létrejött sokszögekkel közelítjük. Eh-
hez az [a; b] intervallumot az a = x0, x1, x2, … xn = b pontokkal n részre osztjuk. Ezt az in-
tervallum egy felosztásának nevezzük.

Tekintsük ennek a felosztásnak egy intervallumát: [xi - 1; xi]. Jelölje mi az f függvénynek ebben az
intervallumban felvett értékeinek alsó határát (az alsó korlátok közt a legnagyobb), Mi pedig
a felsõ határát (a felsõ korlátok közt a legkisebb). Bizonyítható, hogy korlátos függvényeknél ezek
az értékek léteznek.
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y

x
0=a x 1x 2x =nx b

M1 m1
m2

M2

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

Az [xi - 1; xi] intervallum fölé szerkesszünk olyan téglalapokat, amelyeknek másik oldala mi, illetve
Mi. Végezzük el a szerkesztést a felosztás minden intervallumában és egyesítsük a kisebb téglala-
pokat és a nagyobb téglalapokat külön két sokszögbe. Ekkor a vizsgált tartomány egy beírt, illetve
egy körülírt sokszögét kapjuk. Ezeknek a sokszögeknek a területét vizsgáljuk.
A beírt sokszög területe az alsó közelítõ összeg:

sn = m1(x1 - x0) + m2(x2 - x1) + ... + mn(xn - xn - 1).

A körülírt sokszög területe a felsõ közelítõ összeg:

Sn = M1(x1 - x0) + M2(x2 - x1) + ... + Mn(xn - xn - 1).

Ha további osztópontokat veszünk a meglévõkhöz, a felosztást finomítjuk. Ekkor sn általában nõ,
Sn általában csökken, és a leghosszabb részintervallumok hossza is 0-hoz tart.
Így végtelen sok alsó és felsõ összeg keletkezik. Belátható, hogy bármely alsó összeg nem lehet
nagyobb bármely felsõ összegnél.

DEFINÍCIÓ: Az [a; b] intervallumon korlátos, f függvény integrálható, ha bármely, minden határon
túl finomodó felosztássorozatához tartozó alsó és felsõ összegei sorozatának közös határérté-
ke van, azaz lim limn n

n n
s S

→ →
=

• •
. Ezt a közös határértéket nevezzük az f függvény [a; b] inter-

vallumon vett határozott integráljának. Jelölés: ( ) d
b

a

f x x∫ .

IV. Görbe alatti terület

Így tehát nemnegatív, integrálható függvények határozott integrálja megadja a függvény alatti
területet.
Az integrál területszámítási alkalmazásánál figyelembe kell venni, hogy az x tengely alatti terület
negatív elõjellel adódik.

TÉTEL: Ha az [a; b]-on folytonos f függvény nem vált elõjelet, akkor x = a, x = b, és az x tengely

és a függvény grafikonja által közrezárt síkidom területe: = ∫ ( ) d
b

a

t f x x .

y

xa b

y

xa b

x–

De:
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TÉTEL: Két függvény által közrezárt síkidom területe:

= −∫( ( ) ( )) d
b

a

t f x g x x   (ha f(x) > g(x))

y

xa b

f x( )

g x( )

Ilyenkor általában a két függvény metszéspontját kell elõször meghatározni. Majd a két függvény
különbségét kell integrálni, a legvégén pedig a Newton–Leibniz-formulával kiszámolni a határozott
integrál értékét.

V. Alkalmazások:
• A Pitagorasz-tétel bizonyítása terület-összerakással
• Geometriai valószínûségek kiszámításakor szükség van geometriai alakzatok területének

meghatározására
• Kör területe
• Síkidomokkal, illetve síkba kiteríthetõ felületekkel határolt testek felszínének meghatározása

(hasáb, henger, kúp, gúla, csonka kúp, csonka gúla)

Matematikatörténeti vonatkozások:

• Síkidomok területével már az ókorban is foglalkoztak: Hippokratész Kr. e. 450 körül egy
rendszerezõ matematikai mûvet írt, melyben sokat foglalkozott különbözõ egyenesek és
körívek által meghatározott területek kiszámításával.

• Hippokratész „holdacskái”: A derékszögû háromszög oldalai fölé rajzoljunk félköröket.
Ekkor a két „holdacska” területének összege egyenlõ a háromszög területével.

a

cA

C

B

b

• Kb. 150 évvel késõbb Arkhimédész mûveiben is találunk a területszámításról említést: õ is
a kimerítés módszerét használta (körülírt és beírt téglalapok területével való közelítés).

• Riemann (1826–1866) német matematikus fejlesztette ki a róla elnevezett integrálást. A ha-
tározott integrál definíciója pontosítva: Riemann szerint integrálható…

• Leibniz (1646–1716) német és Newton (1642–1727) angol matematikusok egymástól füg-
getlenül felfedezték a differenciál- és integrálszámítást. A mai jelölések többnyire Leibniztõl

származnak: a differenciálhányados 
d
d

y
x

⎛ ⎞⎜ ⎟
⎝ ⎠

 és az integrál ( )dx∫  jele. Õ használta elõször

a függvény, a differenciálszámítás, az integrálszámítás elnevezéseket. Newton Leibniz elõtt
dolgozta ki mindkét számítást, de nem tette közzé, jelölésrendszere is bonyolultabb volt,
mint Leibnizé, így az utókor a Leibniz-féle elveket fogadta el. A határozott integrál kiszámí-
tásának képletét mindkettejük munkásságának elismeréseként nevezzük Newton–Leibniz-for-
mulának.
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23. Kombinációk. Binomiális tétel, a Pascal-háromszög.
A valószínûség kiszámításának kombinatorikus modellje.
A hipergeometrikus eloszlás

Vázlat:
I. Kombinációk (ismétlés nélküli, ismétléses)

II. Binomiális tétel, a Pascal-háromszög
III. Események: elemi események, eseménytér, biztos, lehetetlen esemény
IV. Mûveletek eseményekkel (A + B, A ◊ B, A )
V. Valószínûség definíciója, mûveletek valószínûsége, axiómák

VI. Hipergeometrikus eloszlás
VII. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás

I. Kombinációk (ismétlés nélküli)

A kombinatorika, a valószínûségszámítás és a matematikai statisztika a véletlen tömegjelenségek
törvényszerûségével foglalkozik. A kombinatorika tárgyát képezik a sorba rendezési és a részhal-
maz-kiválasztási problémák, a kombinatorika rendszerint dolgok megszámlálásával foglalkozik.

DEFINÍCIÓ: Legyen n egymástól különbözõ elemünk. Ha ezekbõl k (k £ n) db-ot kiválasztunk
minden lehetséges módon úgy, hogy a kiválasztott elemek sorrendjére nem vagyunk tekin-
tettel, azaz n elem k-ad osztályú ismétlés nélküli kombinációját kapjuk.

TÉTEL: Az n elem k-ad osztályú az ismétlés nélküli kombinációinak száma:

( 1) ( 2) ... ( 1) !
( 1) ... 2 1 ! ( )!

nn n n n k n
k k k n k k

⎛ ⎞⋅ − ⋅ − ⋅ ⋅ − + = = ⎜ ⎟⋅ − ⋅ ⋅ ⋅ ⋅ − ⎝ ⎠
.

BIZONYÍTÁS: A kiválasztást úgy képzelhetjük el, mintha elõször sorba állítanánk a k db kiválasz-
tott elemet. Az elsõ helyre n db-ból, a második helyre (n - 1) db-ból, a k-adik helyre már
csak a megmaradt (n - k + 1) db-ból választhatunk, ezzel a lehetõségek száma n ◊ (n - 1) ◊
◊ (n - 2) ◊ ... ◊ (n - k + 1). Majd a sorrendek számát a k elem összes sorrendjével, k!-ral oszt-
juk, hiszen a sorrend nem számít.

( 1) ( 2) ... ( 1)
!

n n n n k
k

⋅ − ⋅ − ⋅ ⋅ − + =

( 1) ( 2) ... ( 1) ( ) ( 1) ... 2 1 !
! ( ) ( 1) ... 2 1 ! ( )!

n n n n k n k n k n
k n k n k k n k

⋅ − ⋅ − ⋅ ⋅ − + ⋅ − ⋅ − − ⋅ ⋅ ⋅= =
⋅ − ⋅ − − ⋅ ⋅ ⋅ ⋅ −

Erre pedig bevezetjük az 
n

k

⎛ ⎞
⎜ ⎟
⎝ ⎠

 szimbólumot.

DEFINÍCIÓ: Ha n különbözõ elembõl kell k elemet kiválasztani úgy, hogy a kiválasztás sorrendje
nem számít és a már kiválasztott elemeket újra kiválaszthatjuk, akkor az n elem k-ad osztá-
lyú ismétléses kombinációját kapjuk.
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TÉTEL: Az n elem k-ad osztályú ismétléses kombinációjának száma: 
1n k

k

+ −⎛ ⎞
⎜ ⎟
⎝ ⎠

.

II. Binomiális tétel

TÉTEL: − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 1 1 2 2 1 1 0( ) ... .
0 1 2 1

n n n n n nn n n n n
a b a b a b a b a b a b

n n

A tételben szereplõ 
⎛ ⎞
⎜ ⎟
⎝ ⎠

n

k
 együtthatókat binomiális együtthatóknak nevezzük.

BIZONYÍTÁS: (a + b)n = (a + b)(a + b)(a + b)...(a + b).
Bontsuk fel a jobb oldalon álló n darab zárójelet: mindegyik összegbõl ki kell választani az
egyik tagot, ezeket a tagokat össze kell szorozni, majd a kapott szorzatokat össze kell adni.
Mindegyik kapott szorzat n tényezõbõl áll, mindegyikben szerepel a és b, mégpedig
an - k ◊ bk alakban, mert a zárójelbõl vagy a-t, vagy b-t választunk, a-ból n - k darabot, b-bõl
k darabot.
⎛ ⎞
⎜ ⎟
⎝ ⎠

n

k
-féleképpen lehet az n darab tényezõbõl azt a k darabot kiválasztani, amelyikbõl a b

szorzótényezõt vesszük. Tehát az an - k ◊ bk tagból 
⎛ ⎞
⎜ ⎟
⎝ ⎠

n

k
 darab van, tehát ez a tag együtthatója.

Így a szorzat a tételbeli alakba írható.

A binomiális együtthatók tulajdonságai:

• 0! a definíció szerint 1, ezért 1
n

n

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 és 1

0

n⎛ ⎞
=⎜ ⎟

⎝ ⎠
.

• Az n elem közül ugyanannyiféleképpen lehet k elemet kiválasztani, mint n - k elemet ott-

hagyni, így 
n n

k n k

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

.

A binomiális tétel következménye:

Ha az összeg mindkét tagja 1, akkor

2 (1 1) ...
0 1 2 1

n n n n n n n

n n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + = + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Pascal-háromszög:

A háromszögben a sorok számozása nullával kezdõdik, a páratlan és a páros sorokban a számok el
vannak csúsztatva egymáshoz képest. A háromszöget a következõ egyszerû módon lehet felírni:
A nulladik sorban csak egy darab 1-es van. A következõ sorok felírásakor a szabály a következõ:
az új számot úgy kapjuk meg, ha összeadjuk a felette balra és felette jobbra található két számot.
Ha az összeg valamelyik tagja hiányzik (sor széle), akkor nullának kell tekinteni. Például az 1-es
sor elsõ száma 0 + 1 = 1, míg a 2-es sor középsõ száma 1 + 1 = 2.
Ez a meghatározás Pascal képletén alapul, amely szerint az n-edik sor k-adik eleme a következõ

képlettel számolható: 
1 1

1

n n n

k k k

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 bármely nemnegatív egész n és bármely 0 és n közötti

k egész esetében.
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A Pascal-háromszög szimmetriája miatt is látható, hogy 
n n

k n k

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

.

A meghatározásból látszik, hogy az n-edik sorban a kéttagú összeg n-edik hatványának együtthatói,
azaz a binomiális együtthatók állnak.

 

0
0

1
0

2
0

3
0

4
0

2
1

3
1

4
1

2
2

3
2

4
2

3
3

4
3

4
4

1
1

III. Események

A valószínûségszámítás véletlen tömegjelenségek vizsgálatával foglalkozik.

DEFINÍCIÓ: Véletlen jelenségnek nevezzük azokat a jelenségeket, amelyeket a leírható körülmé-
nyek nem határoznak meg egyértelmûen.
Pl. egy dobókocka feldobása.

DEFINÍCIÓ: Kísérletnek nevezzük a véletlen jelenség megfigyelését.

DEFINÍCIÓ: Elemi eseménynek nevezzük a kísérlet során bekövetkezõ lehetséges kimeneteleket.
Pl. a kocka dobásakor azt, hogy hányas számot dobunk.

DEFINÍCIÓ: Az eseménytér az elemi események halmaza.
Pl. a kocka dobásakor {1; 2; 3; 4; 5; 6}.

DEFINÍCIÓ: Az elemi események egy halmazát, azaz az eseménytér egy részhalmazát eseménynek
nevezzük.
Pl. kockadobáskor eseménynek tekinthetjük a páros szám dobását.
Az eseményeket nagybetûvel jelöljük. Pl. A = {2; 4; 6}

DEFINÍCIÓ: Az eseménytérhez tartozó azon esemény, amely biztosan bekövetkezik, a biztos ese-
mény, amely semmiképpen sem következhet be, a lehetetlen esemény.
A biztos esemény jele: H, a lehetetlen esemény jele: ∆.
Pl. a kockadobáskor biztos esemény: 7-nél kisebb számot dobunk, lehetetlen esemény: 8-nál
nagyobbat dobunk.

IV. Mûveletek eseményekkel

DEFINÍCIÓ: Az A esemény komplementere az az esemény, amely akkor következik be, amikor
A nem következik be. Jele: A .

DEFINÍCIÓ: Az A és B események összege az az esemény, amely akkor következik be, amikor
A vagy B bekövetkezik. Jele: A + B.

DEFINÍCIÓ: Az A és B események szorzata az az esemény, amely akkor következik be, amikor
A és B bekövetkezik. Jele: A ◊ B.

DEFINÍCIÓ: Az A és B események egymást kizárják, ha egyszerre nem következhetnek be.

Az eseményekkel kapcsolatos mûveletek tulajdonságai, azonosságai a halmazmûveletekre megis-
mert tételekhez hasonlóan leírhatók, illetve bizonyíthatók.
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V. A valószínûségszámítás alapjai

DEFINÍCIÓ: Ha elvégzünk n-szer egy kísérletet, és ebbõl az A esemény k-szor következik be, akkor

az A esemény relatív gyakorisága a k
n

 hányados.

DEFINÍCIÓ: Ha sokszor elvégzünk egy kísérletet, akkor megfigyelhetjük, hogy egy A esemény
relatív gyakorisága egy szám körül ingadozik. Ezt a számot nevezzük az A esemény való-
színûségének. Jele: P(A).

DEFINÍCIÓ: A valószínûség kiszámításának klasszikus modelljét akkor alkalmazhatjuk, ha egy
kísérletnek véges sok kimenetele van és ezek valószínûsége egyenlõ. Ekkor az A esemény

valószínûsége: = kedvezõ elemi események száma
( )

összes elemi esemény száma
P A .

A valószínûségszámítás axiómái:

• Tetszõleges A esemény esetén 0 £ P(A) £ 1.
• Biztos esemény valószínûsége 1, lehetetlen eseményé 0.
• Ha A és B egymást kizáró események, akkor P(A + B) = P(A) + P(B).
• Ha A és B tetszõleges esemény, akkor P(A + B) = P(A) + P(B) - P(A ◊ B).
• P(A) + P( A ) = 1.

DEFINÍCIÓ: Az A esemény B-re vonatkozó feltételes valószínûsége: 
( )

( | )
( )

P A B
P A B

P B
⋅= .

Ez annak a valószínûsége, hogy az A esemény bekövetkezik, feltéve, hogy a B esemény be-
következik.

DEFINÍCIÓ: Az A és B események egymástól függetlenek, ha P(A | B) = P(A).
Ekkor P(A ◊ B) = P(A) ◊ P(B).

DEFINÍCIÓ: Ha egy esemény elõfordulását geometriai alakzat (vonal, síkidom, test) mértékével
jellemezzük, és az esemény bekövetkezésének valószínûségét ezek hányadosával fejezzük
ki, akkor geometriai valószínûségrõl beszélünk.

VI. Diszkrét eloszlások
A kísérletek kimenetelei általában számokkal jellemezhetõk. Ezekre a mennyiségekre jellemzõ,
hogy értékük a véletlentõl függ, és mindegyikük egy-egy eseményhez van hozzárendelve.

DEFINÍCIÓ: A valószínûségi változó az eseménytéren értelmezett valós értékû függvény. Jele: x.

DEFINÍCIÓ: Ha a valószínûségi változó lehetséges értékeinek száma véges vagy megszámlálhatóan
végtelen, akkor diszkrét valószínûségi változóról beszélünk.

DEFINÍCIÓ: A visszatevés nélküli mintavétel eloszlását hipergeometrikus eloszlásnak nevezzük.

TÉTEL: Hipergeometrikus eloszlásnál legyen N db elemünk, amelybõl M db elem rendelkezik egy
adott A tulajdonsággal, N - M db pedig nem. Kiválasztunk véletlenszerûen visszatevés nél-
kül n db-ot. Annak a valószínûsége, hogy a kihúzott n db elem közül k db rendelkezik az
A tulajdonsággal:

( )

M N M
k n k

P k
N
n

−⎛ ⎞ ⎛ ⎞⋅⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

x , ahol k £ n.
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BIZONYÍTÁS: A kérdés az, hogy mennyi a valószínûsége annak, hogy a kihúzott n db elem között
k db A tulajdonságú elem van.

A kombinatorikában tanultak szerint a kedvezõ esetek száma M N M
k n k

−⎛ ⎞ ⎛ ⎞⋅⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
, mert M db-ból

kell k db-ot kiválasztani, amit M
k

⎛ ⎞
⎜ ⎟
⎝ ⎠

-féleképpen tehetünk meg, és a maradék N - M db-ból

n - k db-ot kell kiválasztanunk, amit N M
n k

−⎛ ⎞
⎜ ⎟−⎝ ⎠

-féleképpen tehetünk meg.

Az összes esetek száma: N
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

, mert N db-ból kell n db-ot választani.

Ezt felhasználva kapjuk: ( )

M N M
k n k

P k
N
n

−⎛ ⎞ ⎛ ⎞⋅⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

x .

TÉTEL: A hipergeometrikus eloszlás esetén az A tulajdonságú elemek számának várható értéke:

( ) MM n p n
N

= ⋅ = ⋅x

VII. Alkalmazások
Kiválasztási problémák:

• Hányféleképpen lehet kitölteni egy lottószelvényt?
• Egy n elemû halmaznak hány darab k elemû részhalmaza van?

Binomiális együtthatók, Pascal-háromszög:
• A Galton-deszka egy olyan egyenlõ szárú háromszög alakú szerkezet, amelyben úgy vannak

elhelyezve akadályok és útvonalak, hogy minden akadálynál egyenlõ eséllyel (0,5) térhet el
jobbra, illetve balra a lefele guruló golyó. A golyó a Galton-deszka egyes rekeszeibe a Pas-
cal-háromszögben szereplõ binomiális együtthatók alapján érkezik.

Klasszikus valószínûségi modell:
• Szerencsejátékok esetén a nyerési esély megállapítása.
• Mekkora a valószínûsége annak, hogy az ötös lottón, a hatos lottón telitalálatos szelvényünk

lesz?

Matematikatörténeti vonatkozások:

• A Pascal-háromszöghöz hasonló háromszöget alkotott Csu Si-csie a XII. századi Kínában,
hasonló háromszögeket készítettek indiai, perzsa, itáliai matematikusok.

• Pascal (1623–1662) francia matematikus a binomiális együtthatókat tanulmányozva mód-
szert adott a kiszámításukra, és megalkotta a Pascal-háromszöget.

• Elõször Leibniz (1646–1716) német matematikus rendszerezte a kombinatorikai ismereteket.
• Bernoulli (1654–1705) svájci matematikus alkalmazta elõször a kombinatorikai ismereteket

valószínûség kiszámítására, ezzel jelentõsen hozzájárult a valószínûség-elmélet kifejleszté-
séhez.
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24. Permutációk, variációk. A binomiális eloszlás.
A valószínûség kiszámításának geometriai modellje

Vázlat:
I. Permutációk

II. Variációk
III. A valószínûségszámítás alapjai
IV. A binomiális eloszlás
V. A valószínûség kiszámításának geometriai modellje

VI. Alkalmazások, matematikatörténeti vonatkozások

Kidolgozás:
A kombinatorika, a valószínûségszámítás és a matematikai statisztika a véletlen tömegjelenségek
törvényszerûségével foglalkozik. A kombinatorika tárgyát képezik a sorba rendezési és a részhal-
maz-kiválasztási problémák, a kombinatorika rendszerint dolgok megszámlálásával foglalkozik.

I. Permutációk

DEFINÍCIÓ: Egy adott n elemû halmaz elemeinek egy ismétlés nélküli permutációján az n külön-
bözõ elem egy sorba rendezését (sorrendjét) értjük.

TÉTEL: Egy n elemû halmaz ismétlés nélküli összes permutációinak száma:

n ◊ (n - 1) ◊ (n - 2) ◊ ... ◊ 2 ◊ 1 = n!.

DEFINÍCIÓ: Ha az n elem között van k1, k2, …, km egymással megegyezõ, akkor az elemek egy
sorba rendezését ismétléses permutációnak nevezzük.

TÉTEL: Ha n elem között k1, k2, …, km db megegyezõ van, és k + k2 + … + km = n, akkor ezeket az

elemeket 
1 2

!
! ! ... !m

n
k k k⋅ ⋅ ⋅

 különbözõ módon lehet sorba rendezni, ez az ismétléses permutá-

ciók száma.

II. Variációk

DEFINÍCIÓ: Legyen n db egymástól különbözõ elemünk. Ha ezekbõl k (k £ n) db-ot kiválasztunk
minden lehetséges módon úgy, hogy a kiválasztott elemek sorrendje is számít, akkor az n
elem k-ad osztályú ismétlés nélküli variációját kapjuk.

TÉTEL: Az n elem k-ad osztályú ismétlés nélküli variációk száma: !
( )!

n
n k−

.

BIZONYÍTÁS: Vegyünk egy k rekeszes dobozt. Ebben helyezzünk el az n elem közül k db elemet
minden lehetséges módon.
Az elsõ rekeszbe az n elem bármelyike tehetõ. A második rekeszbe már csak (n - 1) elem
közül választhatunk. Ez (n - 1)-féle kitöltést ad a 2. rekesz számára. Az elsõ két rekeszbe
n(n - 1)-féleképpen tehetõk az elemek. Minden rekeszbe 1-gyel kevesebb elem közül vá-
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laszthatunk, mint az elõzõbe. A k-adik rekeszbe n - (k - 1) = n - k + 1 elem közül választ-
hatunk.
A doboz teljes kitöltésére összesen n ◊ (n - 1) ◊ ... ◊ (n - k + 1) lehetõség adódik. Ha az ered-
ményt (n - k)!-ral bõvítjük, akkor

( 1) ... ( 1) ( ) ( 1) ... 2 1 !( 1) ... ( 1)
( )! ( )!

n n n k n k n k nn n n k
n k n k

⋅ − ⋅ ⋅ − + ⋅ − ⋅ − − ⋅ ⋅ ⋅⋅ − ⋅ ⋅ − + = =
− −

DEFINÍCIÓ: Legyen n db egymástól különbözõ elemünk. Ha ezekbõl kiválasztunk k db-ot minden
lehetséges módon úgy, hogy a kiválasztott elemek sorrendje is számít és ugyanazt az elemet
többször is választhatjuk, akkor az n elem k-ad osztályú ismétléses variációját kapjuk.

TÉTEL: Az n elem k-ad osztályú ismétléses variációk száma: nk.

III. A valószínûségszámítás alapjai
A valószínûségszámítás a véletlen tömegjelenségek bekövetkezésének esélyének vizsgálatával fog-
lalkozik.

DEFINÍCIÓ: Véletlen jelenségnek nevezzük azokat a jelenségeket, amelyeket a leírható körülmé-
nyek nem határoznak meg egyértelmûen.
Pl. egy dobókocka feldobása.

DEFINÍCIÓ: Kísérletnek nevezzük a véletlen jelenség megfigyelését.

DEFINÍCIÓ: Elemi eseménynek nevezzük a kísérlet során bekövetkezõ lehetséges kimeneteleket.
Pl. a kocka dobása esetén azt, hogy hányas számot dobunk.

DEFINÍCIÓ: Az eseménytér az elemi események halmaza.
Pl. a kocka dobása esetén {1; 2; 3; 4; 5; 6}.

DEFINÍCIÓ: Az elemi események egy halmazát, azaz az eseménytér egy részhalmazát eseménynek
nevezzük.
Pl. kockadobáskor esemény a páros szám dobása.
Az eseményeket nagybetûvel jelöljük. Pl. A = {2; 4; 6}

DEFINÍCIÓ: Az eseménytérhez tartozó azon esemény, amely biztosan bekövetkezik, a biztos ese-
mény, amely semmiképpen sem következhet be, a lehetetlen esemény.
A biztos esemény jele: H, a lehetetlen esemény jele: ∆.
Pl. a kockadobás esetén biztos esemény: 7-nél kisebb számot dobunk, lehetetlen esemény: 8-
nál nagyobbat dobunk.

DEFINÍCIÓ: Ha elvégzünk n-szer egy kísérletet, és ebbõl az A esemény k-szor következik be, akkor

az A esemény relatív gyakorisága a k
n

 hányados.

DEFINÍCIÓ: Ha sokszor elvégzünk egy kísérletet, akkor megfigyelhetjük, hogy egy A esemény
relatív gyakorisága egy szám körül ingadozik. Ezt a számot nevezzük az A esemény való-
színûségének. Jele: P(A).

DEFINÍCIÓ: A valószínûség kiszámításának klasszikus modelljét akkor alkalmazhatjuk, ha egy
kísérletnek véges sok kimenetele van és ezek valószínûsége egyenlõ. Ekkor az A esemény

valószínûsége: = kedvezõ elemi események száma
( )

összes elemi esemény száma
P A .
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A valószínûségszámítás axiómái:

• Tetszõleges A esemény esetén 0 £ P(A) £ 1.
• Biztos esemény valószínûsége 1, lehetetlen eseményé 0.
• Ha A és B egymást kizáró események, akkor P(A + B) = P(A) + P(B).
• Ha A és B tetszõleges esemény, akkor P(A + B) = P(A) + P(B) - P(A ◊ B).
• P(A) + P( A ) = 1.

DEFINÍCIÓ: Az A esemény B-re vonatkozó feltételes valószínûsége: 
( )

( | )
( )

P A B
P A B

P B
⋅= .

Ez annak a valószínûsége, hogy az A esemény bekövetkezik, feltéve, hogy a B esemény be-
következik.

DEFINÍCIÓ: Az A és B események egymástól függetlenek, ha P(A | B) = P(A).
Ekkor P(A ◊ B) = P(A) ◊ P(B).

IV. Diszkrét eloszlások
A kísérletek kimenetelei általában számokkal jellemezhetõk. Ezekre a mennyiségekre jellemzõ,
hogy értékük a véletlentõl függ, és mindegyikük egy-egy eseményhez van hozzárendelve.

DEFINÍCIÓ: A valószínûségi változó az eseménytéren értelmezett valós értékû függvény. Jele: x.

DEFINÍCIÓ: Ha a valószínûségi változó lehetséges értékeinek száma véges vagy megszámlálhatóan
végtelen, akkor diszkrét valószínûségi változóról beszélünk.

DEFINÍCIÓ: A binomiális eloszlás olyan kísérletnél fordul elõ, amelynek csak két kimenetele le-
hetséges: az A esemény p valószínûséggel bekövetkezik, vagy 1 - p valószínûséggel nem
következik be.

TÉTEL: Binomiális eloszlás esetén ha a kísérletet n-szer ismételjük, akkor annak valószínûsége,
hogy az A esemény k-szor következik be, éppen

( ) (1 )k n knP k p p
k

−⎛ ⎞= = ⋅ ⋅ −⎜ ⎟
⎝ ⎠

x , ahol k £ n.

(Binomiális eloszlásra vezetnek a visszatevéses mintavétel esetei, ahol n elem közül p való-
színûséggel választunk valamilyen tulajdonsággal rendelkezõt oly módon, hogy a kivett
elemet az újabb húzás elõtt visszatesszük.)

BIZONYÍTÁS: Tegyük fel, hogy a visszatevéses mintavételek során N db elem közül választunk ki
n db-ot. Legyen M db elem A tulajdonságú, N - M db elem A  tulajdonságú.
A visszatevéses mintavétel azt jelenti, hogy minden egyes húzás után visszatesszük a kihú-
zott elemet, így a húzások egymástól függetlenek lesznek. A kérdés az, hogy mennyi a való-
színûsége annak, hogy a kihúzott n db elem között k db A tulajdonságú elem van.

A kombinatorikában tanultak szerint a kedvezõ esetek száma ( )k n kn M N M
k

−⎛ ⎞ ⋅ ⋅ −⎜ ⎟
⎝ ⎠

, mert

k-szor kell M db golyóból választanunk, n - k-szor kell N - M db golyó közül, és ez n
k
⎛ ⎞
⎜ ⎟
⎝ ⎠

-

féleképpen fordulhat elõ aszerint, hogy hányadik húzás az A tulajdonságú.
Az összes esetek száma Nn, mert n-szer húzunk N elembõl.
Így

( ) ( )
( )

( )
k n k

k n kn kk

n k n k

n M N M
k N Mn nM M N MP

k k N NN N N

−
−−

−

⎛ ⎞ ⋅ ⋅ −⎜ ⎟ − −⎛ ⎞ ⎛ ⎞⎝ ⎠= = ⋅ ⋅ = ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.
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Tudjuk, hogy annak az esélye, hogy A tulajdonságút húzunk: ( ) MP A p
N

= = , hogy nem

A tulajdonságút húzunk: ( ) 1 1 M N MP A p
N N

−= − = − = .

Ezt felhasználva kapjuk: ( ) (1 )k n knP k p p
k

−⎛ ⎞= = ⋅ ⋅ −⎜ ⎟
⎝ ⎠

x .

TÉTEL: A binomiális eloszlás esetén az A tulajdonságú elemek számának várható értéke:

( ) MM n p n
N

= ⋅ = ⋅x

V. A valószínûség kiszámításának geometriai modellje
Adott egy pontok alkotta geometriai alakzat. Ekkor elemi eseménynek az adott ponthalmazból az
egyik pont kiválasztása, vagyis az elemi eseménynek pontokat feleltetünk meg. Egy esemény azt
jelenti, hogy a kiválasztott pont beletartozik egy bizonyos kijelölt részponthalmazba, résztarto-
mányba, vagyis az események ponthalmazok, tartományok. Ekkor az eseménytér egy geometriai
alakzat, az esemény ezen pontok egy bizonyos tulajdonsággal rendelkezõ részhalmaza, az elemi
esemény a geometriai alakzat egy pontja.

DEFINÍCIÓ: Ha az esemény bekövetkezésének valószínûsége arányos a részhalmaz mértékszámá-
val, akkor geometriai valószínûségérõl beszélünk.
Ekkor az A esemény valószínûsége:

az  eseménynek megfelelõ részalakzat mértéke
( )

a kísérlettel kapcsolatos teljes alakzat mértéke
A mP A

M
= = .

Ekkor a mérték lehet pl. hosszúság, terület, térfogat.
Példák:

• egy adott méretû dartstáblán egy bizonyos részbe esõ találat valószínûsége
• két ember találkozásának valószínûsége egy bizonyos órában, ha egyikük sem vár 15 percnél

többet
• meteor szárazföldre való becsapódásának valószínûsége

VI. Alkalmazások
Sorbarendezési problémák:

• Hányféleképpen lehet kitölteni egy totószelvényt?
• Sorsolások, versenyek eredményei sorrendjének lehetõségei

Binomiális eloszlás:
• Meteorológiai elõrejelzés
• Szerencsejátékok esetén a nyerési esély megállapítása: mekkora a valószínûsége annak, hogy a

totón telitalálatos szelvényünk lesz?
• Mintavételek a minõség-ellenõrzés során: a gyártósorokon elkészült termékek közül a selej-

tek számának közelítõ meghatározása várható érték segítségével
• A Galton-deszka egy függõleges, egyenlõ szárú háromszög alakú szerkezet, amelyben úgy

vannak elhelyezve akadályok és útvonalak, hogy a lefelé guruló golyó minden akadálynál

egyenlõ eséllyel ( 1
2

 valószínûséggel) vagy balra, vagy jobbra térhet ki. A továbbgördülõ

golyó a következõ szinten újabb akadályba ütközik, ahol szintén balra vagy jobbra térhet ki,
és így tovább, egészen addig, amíg az utolsó akadály utáni legalsó sorban meg nem áll.
Ha a Galton-deszka n sorban tartalmaz akadályokat, az elsõ sorban 1, a második sorban 2,
…, az n-edik sorban n db akadályt tartalmaz. Így az utolsó sorba n + 1 lehetséges helyre ér-
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kezhet a golyó. Annak a valószínûsége, hogy az utolsó sorban a balról számított k-adik

(k = 0, 1, 2, ..., n) rekeszben áll meg a golyó: ( ) ( ) ( )1 1 1 .
2 2 2

k n k nn nP
k k

−⎛ ⎞ ⎛ ⎞= ⋅ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Geometriai eloszlás:
• Kvantumfizikában a részecske helyének meghatározása: azt lehet megmondani a részecske

sebességétõl függõen, hogy hol tartózkodik legnagyobb valószínûséggel a részecske.

Matematikatörténeti vonatkozások:

• Az elsõ ismert valószínûségszámítási feladat az 1400-as évekbõl Itáliából származik.
• Pascal (1623–1662) francia matematikus a binomiális együtthatókat tanulmányozva mód-

szert adott a kiszámításukra, a valószínûségszámítás egyik megalapozója volt.
• Elõször Leibniz (1646–1716) német matematikus rendszerezte a kombinatorikai ismerete-

ket, sokat foglalkozott az elemek sorbarendezésével, szimbólumokkal írta le a folyamatokat.
• Bernoulli (1654–1705) svájci matematikus alkalmazta elõször a kombinatorikai ismereteket

valószínûség kiszámítására, jelentõsen hozzájárult a valószínûségelmélet kifejlesztéséhez.
Kidolgozta a valószínûségszámítás kombinatorikus modelljét. Két testvére és édesapja is mate-
matikus volt.

• Buffon (1707–1788) francia természettudós tûproblémájával bevezette a geometriai valószí-
nûség fogalmát.

• A valószínûségszámítással a XIX. század végén több orosz matematikus is foglalkozott:
többek között Csebisev (1821–1894), Markov (1856–1922), Kolmogorov (1903–1987).

• A valószínûségszámítás legfiatalabb ága, amely a számítógépek területén kapott alkalmazást,
az információelmélet, melynek megalapozója Shannon (1916–2001) amerikai matematikus.
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25. Bizonyítási módszerek és bemutatásuk tételek
bizonyításában

Vázlat:
I. Bizonyítások a matematikában

II. Direkt bizonyítás
III. Indirekt bizonyítás
IV. Teljes indukció
V. Skatulyaelv

VI. Alkalmazások

Kidolgozás

I. Bizonyítások a matematikában

A matematika különbözõ ágai hasonlóan épülnek fel. Meghatározunk alapfogalmakat, majd ezek
segítségével további fogalmakat definiálunk. Kimondunk alaptételeket (axiómákat), amelyek
igazságtartalmát bizonyítás nélkül, a szemlélet alapján elfogadjuk. Az axiómákból elindulva a ma-
tematikai logika eszközeivel, helyes következtetéseken keresztül további tételeket bizonyítunk be.
A bizonyítás olyan eljárási mód egy állítás helyességének indoklására, amely során a matematikai
logika mûveleteit használjuk fel. A matematikai tételek általában implikációk vagy ekvivalenciák.
Az implikációk bizonyítása során a feltételbõl helyes matematikai következtetésekkel kell eljutni
a következményhez. Bizonyítás közben a definíciókat, axiómákat, és a már bizonyított tételeket
használhatjuk fel. Így belátjuk, hogy a feltétel valóban elégséges feltétele a következménynek.
Ekvivalenciák bizonyítása során két implikációt bizonyítunk be: be kell látni, hogy mindkét állítás-
ból következik a másik.

II. Direkt bizonyítás

DEFINÍCIÓ: A direkt bizonyítás során igaz állításokból (a feltételekbõl) kiindulva matematikailag
helyes következtetésekkel jutunk el a bizonyítandó állításhoz. A legtöbb matematikai tétel
(geometriai, algebrai) bizonyítása direkt úton történik.

TÉTEL: Pitagorasz-tétel: derékszögû háromszögben a befogók négyzetének összege egyenlõ az
átfogó négyzetével.

BIZONYÍTÁS: (részletesen lásd a 12. tételben)
a2 + b2 + 4t = c2 + 4t. 
 + 4ta2 + b2 = c2. + 4t    

a

b

a

a

a
aa

a

a

a

a

a b+ 90º=

bb

b

b

b b

b

b

a

a

b

b

b

t3

t2

t1
c

c

c

c

a

a

a

a

b

b

b

b

g

g

g

g
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III. Indirekt bizonyítás

DEFINÍCIÓ: Az indirekt bizonyítás olyan eljárás, melynek során feltesszük, hogy a bizonyítandó
állítás nem igaz, és ebbõl kiindulva helyes következtetésekkel lehetetlen következményekhez
jutunk el. Így a kiinduló feltevés volt téves, vagyis a bizonyítandó állítás valójában igaz.

Ha egy állítás ellenkezõjérõl (tagadásáról) helyes gondolatmenettel belátjuk, hogy hamis (ellent-
mondásra vezet), akkor a kijelentés ellentétének ellentéte, azaz maga az állítás igaz.
Az indirekt módszer két logikai törvényen alapul:

• Minden kijelentés igaz, vagy hamis.
• Egy igaz állítás tagadása hamis, és fordítva, hamis kijelentés tagadása igaz.

Indirekt bizonyítási módot akkor érdemes választani, ha az állítás tagadása könnyebben kezelhetõ,
mint maga az állítás.

TÉTEL: Pitagorasz-tétel megfordítása: ha egy háromszög két oldalhosszának négyzetének össze-
ge egyenlõ a harmadik oldal négyzetével, akkor a háromszög derékszögû.

BIZONYÍTÁS: (részletesen lásd a 12. tételben)
Tudjuk, hogy a2 + b2 = c2.
Tegyük fel, hogy a háromszög nem derékszögû. Ekkor tudunk szerkeszteni olyan derékszö-
gû háromszöget, amelynek a befogói a és b, átfogója legyen c’. Mivel ez derékszögû három-
szög, a Pitagorasz-tétel miatt: a2 + b2 = (c’)2. Az eredeti feltétellel összevetve c2 = (c’)2,
amibõl pozitív mennyiségekrõl lévén szó, következik, hogy c = c’.
Ez ellentmond a kiinduló feltételnek, így a háromszög derékszögû.

TÉTEL: 2  irracionális

BIZONYÍTÁS: (részletesen lásd a 2. tételben)
Tegyük fel, hogy 2  racionális:

2
p
q

=  (ahol p, q ŒZ, (p, q) = 1) /( )2

2
2 2

2
2 2

p
q p

q
= ⇒ =

A négyzetszámokban minden prímtényezõ páros sokszor fordul elõ, ebbõl következik, hogy
a bal oldalon páratlan sok db 2-es van, a jobb oldalon páros sok db 2-es van. A számelmélet
alaptétele miatt ez nem lehet, mert egy szám csak egyféleképpen bontható fel prímszámok
szorzatára. Mivel ez ellentmondás, rossz volt a feltevés, vagyis 2  irracionális.

IV. Bizonyítás teljes indukcióval

DEFINÍCIÓ: A teljes indukció olyan állítások bizonyítására alkalmas, melyek n pozitív egész
számtól függenek. A teljes indukciós eljárás során elõször bebizonyítjuk az állítást n = 1-re
(vagy valamilyen konkrét értékre), majd feltételezzük, hogy az állítás igaz n = k-ra (indukciós
feltevés), és ennek felhasználásával bebizonyítjuk, hogy az állítás igaz n = (k + 1)-re. Ezzel
az állítást minden n pozitív egész számra belátjuk.

A teljes indukciót gyakran hasonlítják egy olyan végtelen sok dominóból álló sorhoz, amelyben azt
tudjuk, hogy ha bármelyik dominó feldõl, akkor feldönti a sorban utána következõt is. Ez azt jelen-
ti, hogy ha meglökjük az elsõ dominót, akkor az összes fel fog borulni.
A teljes indukciós bizonyítást egész számokkal kapcsolatos problémák, oszthatósági szabályok
megoldására, tételek bizonyítására használhatjuk.
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TÉTEL: Az elsõ n pozitív egész szám összege: 
( 1)
2

n n⋅ +
.

BIZONYÍTÁS:
n = 1

1

1 2 1
2

⎫⎪ =⎬⋅ = ⎪⎭
n = 2

1 2 3

2 3 3
2

+ = ⎫⎪ =⎬⋅ = ⎪⎭

Tegyük fel, hogy n = k-ra igaz, tehát 
( 1)

1 2 ...
2

k k
k

⋅ ++ + + = .

Bizonyítani kell: 
( 1) ( 2)

1 2 ... ( 1)
2

k k
k k

+ ⋅ ++ + + + + = .

( )⋅ + + + ⋅ ++ + + + + = + + = + ⋅ + = + ⋅ =( 1) ( 2) ( 1) ( 2)1 2 ... ( 1) ( 1) ( 1) 1 ( 1)
2 2 2 2

k k k k kkk k k k k .

Vagyis az állítás teljesül.

TÉTEL: Az elsõ n pozitív páratlan szám összege: 1 + 3 + 5 + ... + (2n - 1) = n2.

BIZONYÍTÁS:
n = 1
Ekkor a bal oldalon csak egy tagja van az összeadásnak, az 1, a jobb oldalon pedig 12 = 1 áll,
így igaz az állítás.
Tegyük fel, hogy n = k-ra igaz, tehát 1 + 3 + 5 + ... + (2k - 1) = k2.

Bizonyítani kell: 1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = (k + 1)2.

1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = k2 + (2k + 1) = (k + 1)2. Vagyis az állítás teljesül.

TÉTEL: Az elsõ n pozitív egész szám négyzetének összege: 
( 1)(2 1)

6
n n n+ +

.

BIZONYÍTÁS:
n = 1

21 1

1 2 3 1
6

⎫= ⎪ =⎬⋅ ⋅ = ⎪⎭
n = 2

2 21 2 5

2 3 5 5
6

⎫+ = ⎪ =⎬⋅ ⋅ = ⎪⎭

Tegyük fel, hogy n = k-ra igaz, tehát 2 2 2 2 ( 1) (2 1)
1 2 3 ...

6
k k k

k
⋅ + ⋅ ++ + + + = .

Be kellene látni, hogy 2 2 2 2 2 ( 1) ( 2) (2 3)
1 2 3 ... ( 1)

6
k k k

k k
+ ⋅ + ⋅ ++ + + + + + = .

2 2 2 2 2 2( 1) (2 1)
1 2 3 ... ( 1) ( 1)

6
k k k

k k k
⋅ + ⋅ ++ + + + + + = + + =
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22(2 1) 6 ( 1) ( 1) (2 7 6)2 6 6( 1) ( 1)
6 6 6

k k k k k kk k kk k
⋅ + + ⋅ + + ⋅ + ++ + += + ⋅ = + ⋅ = =

( 1) (2 3) ( 2)
.

6
k k k+ ⋅ + ⋅ +=

Vagyis az állítás teljesül.

V. Bizonyítás skatulyaelvvel

TÉTEL: Skatulyaelv: a skatulyaelv értelmében ha n skatulyába kell n-nél több elemet szétosztani,
akkor a skatulyák valamelyikébe szükségképpen legalább 2 elem kerül. Ha n skatulyába
k ◊ n-nél több elemet kell szétosztani, akkor a skatulyák valamelyikébe legalább k + 1 elem
kerül (n, k ŒZ+).

BIZONYÍTÁS: Indirekt módon: ha az elv nem igaz, akkor minden skatulyába legfeljebb 1 elem ke-
rül. Ekkor legfeljebb annyi elem van, ahány skatulya. Ez ellentmondás, mert az elemek szá-
ma a skatulyák számánál több.

Az elv végtelen halmazokra is alkalmazható, csak ilyenkor elemszám helyett számosságot
kell használni.
Skatulyaelvvel általában oszthatósági problémákat, csoportosítással kapcsolatos feladatokat
oldhatunk meg.

TÉTEL: Ha adott n + 1 darab pozitív egész szám, akkor ezek között biztosan van kettõ olyan,
amelyek különbsége osztható n-nel.

BIZONYÍTÁS: Készítsünk n db skatulyát, felcímkézve õket 0, 1, …, (n - 1)-ig. A számokat aszerint
helyezzük el az n db skatulyában, hogy mennyi maradékot adnak n-nel osztva. Ekkor bizto-
san van olyan skatulya, amelybe legalább 2 szám kerül, hiszen n + 1 számot kell n skatulyá-
ba szétosztani. Ennek a két számnak a különbsége biztosan osztható lesz n-nel.

Speciálisan: bizonyítsuk be, hogy öt pozitív egész szám között biztosan van kettõ, amelyek
különbsége osztható néggyel.

FELADAT: Bizonyítsuk be, hogy egy 37 fõs társaságban biztosan van 4 olyan ember, akik ugyan-
abban a csillagjegyben születtek.

BIZONYÍTÁS: 36 fõnél elõfordulhat az, hogy minden csillagjegyhez csak 3 ember tartozik, de a 37.
ember biztosan valamelyik csillagjegynél a negyedik lesz.

VI. Alkalmazások
Direkt bizonyítás:

• aΩb és aΩc  fi  aΩb ± c
• 9Ωa  ¤  számjegyek összege osztható 9-cel

Indirekt bizonyítás:
• Végtelen sok prímszám van

Skatulyaelv:
• 25 fõs társaságban biztosan van 3 fõ, akik azonos csillagjegyben születtek
• 5 pozitív egész szám között van 2, melyek különbsége osztható 4-gyel

Teljes indukció:

• 1 1 1
1 2 2 3 ( 1) 1

n
n n n

+ + + =
⋅ ⋅ ⋅ + +

…
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Matematikatörténeti vonatkozások:

• Az ókori Egyiptomban, Mezopotámiában, Kínában, Indiában a matematika gyakorlati jelle-
gû volt: lehetõvé tette a pontos idõ- és helymeghatározást, az adószedéssel és a közmunkák-
kal kapcsolatos számításokat. Nem jegyezték fel, hogyan jöttek rá a matematikai igazságok-
ra, módszerekre, csak rögzítették a módszereket, eljárásokat.

• A Kr. e. VII–VI. században keletkezett a matematika mint tudomány: ekkor már igény volt
az okok kutatására.

• A legkorábbi görög matematikai mû Hippokratész Kr. e. 450 körül született félholdacskák-
kal foglalkozó munkája. Ez a mû megmutatja, hogy a görögöknél olyan fejlett volt a geomet-
ria, hogy egy állítást már bizonyított tényekkel kellett igazolni. A tételeket logikai úton, más
tételekbõl vezették le. Ez a módszer alapigazságokra, axiómákra épült, ezeket a természetbõl
absztrahálták.

• Kr. e. 300 körül Euklidész megalkotta a geometria axiómarendszerét, bevezette a deduktív
(levezetõ) bizonyításmódot. Tõle származik a 2  irracionális tétel elõbb ismertetett indirekt
bizonyítása.

• A teljes indukció elsõ írásos emléke 1575-bõl származik: Ekkor bizonyította be a fenti mó-
don Maurolico olasz matematikus az elsõ n páratlan szám összegére vonatkozó tételt.

• A skatulyaelvet Dirichlet (1805–1859) francia matematikus bizonyította be a fenti módon.

Minden jog fenntartva, beleértve a sokszorosítás, a mû bõvített, illetve rövidített
változata kiadásának jogát is. A kiadó írásbeli hozzájárulása nélkül sem a teljes mû,

sem annak része semmiféle formában nem sokszorosítható.

Copyright Mozaik Kiadó, 2026
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